
Trellis: Privilege Separation for
Multi-User Applications Made Easy

Andrea Mambretti1, Kaan Onarlioglu1, Collin Mulliner1, William Robertson1,
Engin Kirda1, Federico Maggi2, and Stefano Zanero2

1 Northeastern University, Boston, USA
{mbr,onarliog,wkr,ek}@ccs.neu.edu,

collin@mulliner.org,
2 Politecnico di Milano, Milano, Italy

{federico.maggi,stefano.zanero}@polimi.it

Abstract. Operating systems provide a wide variety of resource isola-
tion and access control mechanisms, ranging from traditional user-based
security models to fine-grained permission systems as found in mod-
ern mobile operating systems. However, comparatively little assistance
is available for defining and enforcing access control policies within multi-
user applications. These applications, often found in enterprise environ-
ments, allow multiple users to operate at different privilege levels in terms
of exercising application functionality and accessing data. Developers of
such applications bear a heavy burden in ensuring that security policies
over code and data in this setting are properly expressed and enforced.
We present Trellis, an approach for expressing hierarchical access con-
trol policies in applications and enforcing these policies during execution.
The approach enhances the development toolchain to allow programmers
to partially annotate code and data with simple privilege level tags, and
uses a static analysis to infer suitable tags for the entire application.
At runtime, policies are extracted from the resulting binaries and are
enforced by a modified operating system kernel. Our evaluation demon-
strates that this approach effectively supports the development of secure
multi-user applications with modest runtime performance overhead.

1 Introduction

Operating systems provide a wide range of resource isolation and access con-
trol mechanisms to realize well-established computer security principles such as
privilege separation and assignment of minimal privileges to users and tasks. For
instance, UNIX-like systems employ the traditional access control model based
on user and group identifiers assigned to resources, Linux uses a capability system
for fine-grained process permission management, and modern mobile operating
systems such as Android and iOS allow users to control application permissions
during installation or runtime.

Although these techniques are effective at isolating users of a multi-user sys-
tem from each other, or controlling access to operating system-owned resources

such as hardware devices and the filesystem, they do not address the problem of
enforcing access control within an application itself. In particular, many complex
programs that target enterprise markets (e.g., SAP CRM) support multiple user
roles such as administrators and other unprivileged users, each allowed different
access levels to sensitive application data.

Due to this lack of standard operating system support for developing ap-
plications with multiple privilege levels, the responsibility of implementing an
application-specific access control model is relegated to application program-
mers. However, this can often result in implementation errors, or incorrect use
of various application components as access control primitives, exposing the ap-
plication to privilege escalation attacks. Recent work by Mulliner et al. [21]
demonstrates this problem by showing that many enterprise applications rely
on selectively hiding GUI elements to näıvely control the access to the respec-
tive, sensitive functionalities. This inadequate enforcement scheme was easily be
subverted by the authors using existing GUI inspection tools, allowing them to
access administrator-only features with an unprivileged user account.

There exists substantial prior work that has explored ways to separate appli-
cations into privileged and unprivileged components to contain privilege escala-
tion attacks. For instance, Provos et al. [24] described a methodology to man-
ually split programs into a privileged monitor and an unprivileged slave that
communicate via IPC channels, and Kilpatrick [16] proposed a software library
to ease the development of such applications. Brumley and Song [10] use source
code annotation and static analysis, and Wu et al. [32] use dynamic analysis
to automate parts of this process. However, this work primarily targets system
services, and aims to minimize the code run with superuser privileges. They do
not address the problem of building applications that support strong separation
of multiple users, each with specific code and data access requirements.

In this paper, we introduce an approach called Trellis to develop and enforce
secure hierarchical access control models within multi-user applications. Trellis
provides a simple annotation mechanism for software developers to specify the
required access levels for critical functions and static data, uses static analysis
to derive an access control policy for the entire application, and compiles this
source code into binary executables that are strongly protected by the operating
system. At runtime, the operating system tracks the program control flow and
data accesses, including dynamically allocated data, and enforces the statically-
derived access control policy. Our prototype implementation implements code
and data privilege separation using dynamic adjustment of memory segment
permissions. Trellis does not require drastic modifications to the application
architecture, making it easy to apply to existing source code. It also does not
split applications into multiple components and thus, in contrast to previous
work, does not incur IPC overhead during runtime.

To summarize, we make the following contributions in this paper.

– We propose Trellis, a novel operating system-supported application devel-
opment framework to assist software authors with the development of hi-
erarchical access control policies for multi-user applications. Trellis uses a

combination of source code annotation, static analysis, and dynamic analy-
sis to automatically integrate these policies into applications, and to enforce
them at the operating system level.

– We present a prototype implementation of our system based on LLVM/-
Clang, the GNU C library, and the Linux kernel.

– Our evaluation including micro-benchmarks, and experiments on real-world
applications demonstrate that Trellis imposes a low runtime performance
overhead, an acceptable tradeoff for its additional security guarantees.

2 Threat Model

The environment we consider for this work is a large, multi-user application that
runs on a shared machine. Typical examples of this scenario include kiosk ap-
plications, or large enterprise applications (e.g., SAP CRM) with several users
(e.g., employees) each having a distinct profile. These users can use the applica-
tion at different moments in time and each user, depending on her own profile,
can access different subsets of the application’s functionality and data.

In this setting, the attacker has local or remote access to a computer running
such a multi-user application. The attacker further has access to a user account
on the application. Note that the attacker could already be an ordinary user of
the application; in other words, she may be authorized to legitimately access a
subset of the application’s features. Alternatively, the attacker could compromise
a different user’s account in order to gain unauthorized access to the application.

Our threat model includes two attack scenarios. In the first scenario, the
attacker’s goal is to exercise application features (i.e., execute code) reserved
for higher-privileged application users. Likewise, in the second scenario, the at-
tacker aims to gain access to data associated with a different, higher-privileged
application user. Both attacks are made possible due to the fact that resources
associated with different user accounts are managed in the same address space
within the application.

Note that we assume sensitive code and data that could be targeted by an
attacker is already protected by traditional operating system protections, and
therefore, sensitive disk or memory contents cannot be accessed by the attacker
directly. Instead, successfully carrying out one of the described attacks requires
the attacker to exploit an application-level vulnerability, and bypass privilege-
separation mechanisms provided by the application in question.

The trusted computing base (TCB) we assume for this work includes the soft-
ware development toolchain (i.e., the compiler and linker), which ensures that
an adversary cannot subvert the access control policies specified by developers.
The TCB also includes the hardware and software stack up to and including the
operating system kernel. This implies that adversaries cannot subvert the en-
forcement of the developer-specified policies, or tamper with the authentication
procedure to transition between privilege levels. Finally, we assume that the ad-
versary cannot tamper with the binary itself, which contains a machine-readable
specification of the intended access control policy, nor with the loading of this

.C

....

....

....

+ Trellis
Static Analyzer

Trellis
Compiler

.EXE

.C

Source code

Annotations

Fully-annotated source code

Binary executable

Fig. 1. An overview of compiling applications with Trellis.

specification into the kernel. Achieving these guarantees has several solutions,
such as relying upon normal operating system-enforced user access control or,
alternatively, using trusted computing primitives. The exact mechanism used is
considered outside the scope of this work.

3 Design

Trellis spans both the development toolchain and the runtime environment.
First, it provides a source code annotation mechanism for software developers
to specify the different privilege levels (i.e., roles) required for effective access
control in their applications, as well as compilation tools and system libraries
capable of building Trellis-aware binaries. Second, it enhances the operating sys-
tem kernel to monitor execution flows and authorize transitions between privilege
levels consistent with specified access control policies.

At a high level, running a Trellis-enhanced application is a two stage process.
First, an instrumented binary executable must be built according to the anno-
tated source code. Then, the executable must be loaded with its initial privilege
state and run.

An overview of the first stage, the compilation of binary executables, is shown
in Figure 1. The application developer first (partially) annotates the program
source code, which involves marking security sensitive code and data with their
corresponding privilege levels (often, user roles) required to access them. The
partially annotated source code is then inspected by the static analyzer compo-
nent, which explores the program function call graph and automatically infers
privilege level tags for all unmarked code and static data. Finally, the fully-
annotated source code is compiled by an augmented tool chain, which instru-
ments the binary according to the specified access control policy and creates an
executable file including the necessary Trellis metadata.

The executable can then be loaded and launched. An overview of this pro-
cess is shown in Figure 2. Here, Trellis uses an enhanced binary loader that first
reads the access control policy metadata stored inside the binary, and commu-
nicates this information to the operating system to initialize the application.
Once launched, the operating system monitors the application and its memory

Trellis
Loader

.EXE

Binary executable

OSRunning
App

Dynamic
Memory
Allocator

Trellis
Authenticator

Trellis
Metadata

Privilege Level
Change Request

Alloc/Dealloc Allocation notification

success / fail

Fig. 2. An overview of running applications with Trellis.

accesses to enforce the implemented access control policy. In the case of dynamic
memory allocation requests by the application, a modified system memory al-
locator notifies the operating system of the performed operation. In this way,
access control checks can be applied to those memory regions as well. Of course,
during runtime, the application might need to change the active privilege level
to a more privileged one. In that case, the application issues a privilege level
change request to the operating system, and the operating system in turn con-
sults an authentication module to check whether the request should be served.
If permission is granted, the system performs the change.

3.1 Access Control Model

The design of Trellis permits a flexible access control model, where developers
can tag units of code (e.g., functions) with a set of privilege levels l ∈ L. A partial
ordering is defined on L such that the usual notions of reflexivity, antisymmetry,
and transitivity are satisfied. More formally, given

l ∈ L a set of partially-ordered privilege levels,

(C, l) ∈ C a set of units of tagged program code,

(d, l) ∈ D a set of tagged data,

D ∈ D a set of all program data,

we define a program state as

S = 〈C,D〉

which describes the currently-executing unit of code at level l and the set of
data upon which it can (potentially) compute. In the following, we refer to
“units of code” as functions, although this need not be the level of granularity
implemented in practice.

The developer is responsible for annotating functions with a privilege level
according to application-specific requirements. These annotations, however, do

not need to be completely specified for each function. Instead, Trellis permits
developers to partially specify privilege levels, and an inference procedure will
propagate privilege levels according to the program call graph. More precisely,
given a call relation () : C 7→ C, the inference process will assign an unanno-
tated function (C ′, ·) the infimum, or greatest lower bound, of all of its callers:

(C ′, l′) s.t. l′ = inf
⋃
i

(Ci, li), Ci C ′∀Ci. (1)

Note that the inference procedure might require an iterative fixpoint computa-
tion to establish privilege levels for all unannotated functions.

Given an annotated program, we can then define a transition relation

(⇒) : S × S

that specifies (i) how transitions between privilege levels can occur during exe-
cution, and (ii) how data is tagged at runtime.

First, for function invocation, we have:

invoke : C 7→ {C ∪ ∅}

((Ci, li), Di)⇒ ((Cj , lj), Di) where

Ci Cj ,

(lj ≤ li) ∨ (auth ((Ci, li), (Cj , lj)))

Here, auth : C × C 7→ {t, f} is an authentication predicate that is left as an
open parameter of the implementation. The only requirement is that a binary
decision is returned to either permit or deny an invocation between functions at
given privilege levels. auth is only invoked if transitioning to a higher privilege
level; otherwise, the transition is implicitly allowed to occur.

Another important operation we formally specify is data allocation:

alloc : C 7→ D

((Ci, li), Di)⇒ ((Ci, li), Dj) where

alloc ((Ci, li)) = (d, li),

(d, li) ∈ Dj

For this transition rule, we further distinguish between statically-allocated data,
stack-allocated data, and heap-allocated data. For statically-allocated data, the
developer either provides a privilege level annotation for the system, or one is
automatically inferred. Stack-allocated data, on the other hand, is always tagged
with the privilege level for the associated function. Finally, heap-allocated data
is tagged with the level of the enclosing function of the allocation site.

Finally, we specify the notion of data access, which subsumes both data reads
and writes:

access : C×D 7→ {t, f}

((Ci, li), Di)⇒ ((Ci, li), Dj) where

access ((Ci, li), (dj , lj)) ≡ lj ≤ li,

(dj , lj) ∈ Dj

Here, we simply state that reads or writes of data must only be permitted
when the current privilege level is greater than or equal to the data’s tag.

4 Implementation

In this section, we present a proof-of-concept implementation of Trellis in de-
tail for Linux. We begin by describing the compile-time annotation and tag
propagation procedure, and then discuss the implementation of runtime policy
enforcement. Note that while the formal model we describe in Section 3.1 de-
fines a partially-ordered set of privileges, our prototype implementation assumes
a strict hierarchy of privilege levels for simplicity.

4.1 Compile-Time Component

The compile-time component of Trellis is implemented as a series of transforma-
tion passes for the LLVM/Clang compiler suite. As input, this toolchain takes a
program that has been partially annotated by the application developers.

Privilege Level Annotations Privilege level annotations are applied using a
custom attribute that allows developers to express the minimum required privi-
lege level to execute a function or access a static variable. At compile time, the
new attribute is processed by the Clang compiler front-end, which supports cus-
tom attributes by forwarding them to subsequent Clang or LLVM transformation
passes alongside the associated function or global variable identifier.

Since we need to keep track of the attribute parameter (e.g., 2 or 6 in Fig-
ure 3’s example), we modified Clang to forward the parameter value to LLVM.
The attribute is considered valid for both functions and global variable decla-
rations and specifies the privilege level of functions and global variables. For
instance, Figure 3 exemplifies a function fun of privilege level 2 and a global
variable dat at privilege level 6. In this example, the developer wants to prevent
function fun from accessing the memory area where the variable dat will be
stored at runtime.

The attribute value indicates the privilege level of the associated object,
which ranges from 0 and a tunable constant NUM LEVELS, where higher levels
indicate higher privileges. The main function is automatically set to 0, the low-
est privileve level, by Trellis. If the developer tries to use a level greater than
NUM LEVELS, she receives a compile-time error.

Therefore, the prototype implements a simple access control variant of our
proposed model, where privilege levels exist in a strict, linear hierarchy. More

1 void fun() __attribute__ ((trellis_level (2)));
2 int dat __attribute__ ((trellis_level (6)));

Fig. 3. Example of function and global variable annotations using custom attributes.

flexible variants that can model an arbitrary lattice of privilege levels are possi-
ble; however, we consider their implementation an engineering exercise.

Tag Inference The first transformation pass implements privilege level tag in-
ference. It analyzes attribute values specified by the developers and propagates
them to non-tagged functions and data. Clearly, the developer could tag every
function and global variable. However, tag inference improves the ergonomics of
the system by allowing for a partial specification to be automatically extended
to cover the entire program. Developers can inspect the output of the transfor-
mation to identify potential errors in the final policy, or modify it as necessary.

The pass first computes a queue of all annotated functions. Then, operating
in a breadth-first fashion, the pass visits callees of the current function. If the
callee has been manually annotated by the developer, then its tag is considered
immutable and is not changed. If the callee is already tagged, a level is assigned
that is the minimum of the new and existing tags (as dictated by Equation 1).
Otherwise, the caller’s privilege level is used to tag the callee. In either of the
preceding two cases where the callee’s tag has been modified, the callee is added
to the queue of functions to visit. The pass continues processing the function
queue until a fixpoint is reached (i.e., the queue is empty). The search is guar-
anteed to terminate because privilege levels never increase and there exists a
global minimum privilege level.

Transition Instrumentation and Error Handling Trellis protects code and
data tagged with a privilege level that is higher than the current level. However,
the application should be able to change levels at runtime. To do so, Trellis lever-
ages a new system call to inform the Linux kernel that the application requests
a level transition. This system call, trellis switch, is automatically injected
by another transformation pass at every call site of the program when the caller
has a lower privilege level than the callee. After the call site, another invocation
of trellis switch, is injected to inform the kernel that the application should
return to the caller’s privilege level. In particular, whenever this transforma-
tion pass encounters such a call site, it inserts a code snippet as exemplified in
Figure 4.

In case of failure because the current user is not authorized for the requested
level, a wrapper function, trellis exit wrapper, is called. Through the wrap-
per, Trellis allows the developer to specify her own custom failure handling,
where she can for instance implement recovery from the failure. If nothing is
specified by the developer, the system by default will invoke exit to safely ter-
minate the application.

1 if (trellis_switch(x) != 1) {
2 trellis_exit_wrapper ();
3 }
4

5 call ();
6 trellis_switch(y);

Fig. 4. Example of privilege level transition instrumentation and authentication error
handler invocation.

Code and Data Reordering The final transformation involves the reordering
of all functions and static data. Every unit of code and static data is, at this
point, tagged with a certain level. With a simple LLVM pass, each function
and global variable is grouped by privilege level. Each group is then moved to
a pair of separate sections of the binary, one for code and the other for data.
The section names are created by concatenating the data type and level. For
instance, in the case of code, the name will follow the pattern fun trellis l for
every function that is tagged with level l. An analogous name dat trellis l is
created for data tagged with level l.

The pass records all the levels used by the program under analysis and gener-
ates a custom linker script. The linker script is used to map each of the sections
above to a unique program segment. The script also aligns the start address of
each segment to a machine page boundary to avoid loader redefinition.

4.2 Run-Time Component

At this point, the binary has been produced and is ready to be run. The next
subsections explain the runtime execution phase in detail.

Policy Loading During normal program execution, the dynamic loader is re-
sponsible for several tasks that include mapping any shared libraries as well as
mapping program segments from an executable image into memory. Our proto-
type contains a modified loader that parses the privilege level for each Trellis
segment added at compile time, and communicates this information to the kernel
with a special system call added for this purpose: trellis init.

trellis init copies the program’s memory layout from userspace to ker-
nel space, and attaches a list of memory boundaries (see Figure 5) to the
task struct of the application. The task struct is the canonical process de-
scriptor for the running application inside the kernel, and contains all informa-
tion regarding the process (e.g., credentials, memory maps).

trellis init is executed during dynamic loading before control is passed to
the application. Trellis allows this system call to be invoked only once for each
process. This prevents an attacker from using a second invocation of this system
call during execution to elevate privileges by relaxing the intended access control
policy. For the same reason, after the execution of trellis init, mprotect

cannot be invoked by the process.

1 struct trellis_dyn_t{
2 int priv_level;
3 int size;
4 void *mem;
5 struct trellis_dyn_t *next;
6 };

Fig. 5. Memory chunk information element.

After dynamic loading has completed and main is ready to be invoked, the
process is in a state where (i) only code and data at the lowest privilege level
is accessible, and (ii) all other (higher-privileged) segments are not readable,
writable, or executable.

Privilege Level Transitions The second system call added to the Linux kernel
is trellis switch. It allows an application to request a transition from the
current privilege level to another, specified using the parameter new level.

When transitioning to a higher level, the kernel wakes a daemon that blocks
the resumption of the requesting application until authentication has completed;
this allows the use of interactive authentication if desired. In the meantime,
the process is moved by the operating system into the wait state and will be
woken only at the end of the trellis switch system call. If the authentication
succeeds, the kernel changes the permissions of the code and data segments
for the requested level and returns control to the application. Otherwise, the
wrapper for authentication failure is invoked. When transitioning to an equal or
lower level, authentication is not required, and therefore the inverse of the above
segment re-permissioning procedure is performed automatically. An example of
the dynamic memory segment permission process is shown in Figure 6.

Dynamic Data Tagging The third system call is trellis tracemalloc,
which manages dynamic memory allocations. Typically, applications allocate
memory at runtime using standard functions from the malloc family, and re-
lease it using free. These functions are merely the interface to a heap allocator,
and underlying this application-level interface are system calls such as brk and
mmap that are used to request additional memory from the operating system.

This presents two main challenges for our protection mechanism. The first
challenge is that it is not straightforward to assign privilege levels to heap-
allocated data due to the additional indirection imposed by the heap allocator.
That is, the page-level permission scheme used for code and static global data
does not map cleanly into the variable-sized chunk allocation interface exposed
by the heap allocator. The second challenge is that chunk metadata is stored
inline with application data. This implies that page-level permissions would po-
tentially restrict access not only to the data but also the chunk metadata that
is used by the allocator.

To overcome these challenges, Trellis introduces a multi-heap allocator using
trellis tracemalloc that effectively partitions dynamic memory allocation ac-

... ...

privilege
level i

privilege
level i + 1

privilege
level i + 2

privilege
level i + 3

... ...

privilege
level i

privilege
level i + 1

privilege
level i + 2

privilege
level i + 3

App X Virtual Memory

App X

trellis_switch(i + 2)

1

2

Fig. 6. Example of a dynamic memory segment permission update to transition be-
tween permission levels – in this case, from level i to i + 2. Shaded segments indicate
inaccessible code and data regions.

cording to privilege levels. This allocator exposes two functions, trellis malloc

and trellis free, to allocate and release memory, respectively. This allocator
also maintains chunk metadata in a separate area of memory by tracking dif-
ferent lists of pages, where every list of pages corresponds to a separate heap.
These structures are shown in Figure 7. Other standard allocation routines are
implemented in terms of these two basic primitives. The compiler toolchain can
optionally replace uses of the traditional allocation functions in a transparent
fashion, or the developer can be responsible for doing so.

Authentication and Authorization Transition authorization is implemented
by a userspace daemon, a kernel netlink interface, and trellis switch. Before
the application is executed, the netlink interface is activated through a kernel
module and the daemon starts. This can be performed either manually or auto-
matically when needed. When the application requests a privilege level transi-
tion, trellis switch writes the requested privilege level into the netlink chan-
nel where the daemon receives it. The daemon then performs the authentication
check and transmits a message over the netlink channel to notify the kernel of an
authentication success or failure. The netlink communication channel is secure
according to the attacker model defined in Section 2.

To implement authentication, the prototype simply forwards the request to
the standard Pluggable Authentication Module (PAM) framework. PAM is mod-
ular, versatile, supports a variety of authentication mechanisms (e.g., passwords,
smart cards, fingerprints), and is well-tested and widely used.

1 void *heaps[NUM_LEVELS] = { NULL , };
2

3 /* Memory chunk */
4 struct trellis_chunk {
5 size_t size;
6 struct trellis_chunk *next;
7 struct trellis_chunk *prev;
8 void *ptr;
9 };

10

11 /* Page struct with list of empty and used chunks */
12 struct trellis_page {
13 struct trellis_chunk *free;
14 struct trellis_chunk *used;
15 struct trellis_page *next;
16 struct trellis_page *prev;
17 size_t size;
18 };

Fig. 7. Chunk and page list structures for the multi-heap dynamic memory allocator.

5 Evaluation

In this section, we first describe our experiments to measure the performance
overhead introduced when compiling, loading and running applications with
Trellis. Specifically, we present micro-benchmarks to characterize the cost of the
newly introduced Trellis operations, and end-to-end performance tests reflecting
the overhead of running complete applications with Trellis. Next, we present an
empirical evaluation of the developer effort required to adapt an application to
work with Trellis, and test the system’s security.

All experiments were performed on a machine with an Intel i7-3520M CPU
and 4 GB of memory, running Gentoo Linux with a Trellis-patched kernel version
3.9.11 and glibc 2.19. The test binaries were built using LLVM/Clang version
3.5. The results for non-Trellis experiments were obtained on an identical setup
running the vanilla versions of the Linux kernel and glibc.

5.1 Micro-Benchmarks

Privilege Level Change. In this experiment, we measured the time required
to change the privilege level of a running application. We created a benchmark
program, and performed measurements at the entry and return points of the
function that requests the privilege change. That is, our measurement includes
the switch from userspace to kernel space, the call to the corresponding Trellis
system call and all subsequent operations, and the switch back to userspace. Dur-
ing this experiment, the authentication module was configured to automatically
allow all privilege change requests in order to avoid any human interaction over-
head. Note that since a system without Trellis does not contain a corresponding
operation, we cannot obtain any baseline to compare these results with. There-
fore, here we only report the absolute runtime cost of the tested operation.

Dynamic Memory Allocation. We designed this experiment to charac-
terize the overhead of Trellis’s modified malloc operation. We created a simple

benchmark program that takes measurements before and after a call to malloc

to compute the elapsed time, and repeated the experiment with the standard,
unmodified glibc memory allocator for comparison.

In order to see the effects of allocated chunk size on performance, we repeated
this experiment with varying allocation sizes of 1 KB, 2 KB, 4 KB, 1 MB, and 100
MB. We did not observe a significant correlation between chunk size and runtime,
and Trellis’s overhead remained nearly constant in all experiments. Therefore,
we only report the worst-case performance we observed in this section.

Executable Loading. In this experiment, we measured the overhead in-
curred by the dynamic loader for reading the Trellis metadata associated with
a binary executable, and setting up the initial active privilege level inside the
kernel prior to launching the application. To this end, we instrumented the ex-
ecutable loader with timing functions, and experimented with launching a test
binary executable both with and without Trellis support.

5.2 End-to-end Performance

Because we did not have source code access to an actual commercial multi-
user application that would benefit from Trellis’s features, we instead opted to
follow a different evaluation strategy. First, we ran experiments on an application
developed in-house to test Trellis with, which we will call StoreManager. Next,
we took an existing open-source application, HomeBank [2], extended it with
multi-user capabilities, and adapted it to work with Trellis.

StoreManager is a store inventory management software that supports three
distinct user roles. “Unprivileged users” are ordinary employees that can browse
and view details of the items registered in the database, or view aggregate reports
about the inventory status. “Managers” have additional privileges to manage the
inventory, such as adding, removing, or editing the details of items. Finally, “sys-
tem administrators” hold the highest level of privileges, and are able to create
or delete user accounts on the system, or directly manipulate the inventory.

HomeBank is a popular accounting software that provides account manage-
ment, analysis, and reporting features. While HomeBank is originally designed
for personal use, we extended it support four different user roles. Prior to au-
thentication, the application runs under an “unprivileged user” role, with access
to only the basic features. “Analysts” are only able to access analysis and report-
ing functionalities, but cannot add or modify accounts. “Accountants” have the
additional privileges to schedule new transactions on existing accounts. Finally,
“managers” hold the highest privileges and are able to access critical features
including creating and modifying accounts, transactions, and budgets.

We created two instances of each application. One was built to run on an
ordinary Linux system, and access control was enforced by disabling access to
the GUI elements that perform privileged operations inside the application. The
other’s source code was manually annotated by the authors according to the
aforementioned access control policy, and built to run with Trellis. All of the
following experiments were performed using these applications.

Experiments Baseline Trellis Overhead

Privilege Level Change - 159.91 µs -
Dynamic Memory Allocation 34.04 µs 57.27 µs 68.24 %
Executable Loading 108.44 µs 136.45 µs 25.83 %

StoreManager Compilation Time 850.17 ms 933.29 ms 9.78 %
HomeBank Compilation Time 28.62 s 28.72 s 0.36 %

StoreManager Runtime 14.75 s 15.20 s 3.05 %
HomeBank Runtime 14.37 s 14.94 s 4.02 %

Table 1. Trellis performance evaluation results. See Section 5 for detailed explanations.

Compilation Time. In this test, we measured the overhead incurred for
Trellis-specific code analysis, annotation propagation, and source code instru-
mentation performed during compilation and linking of the binary executables.
We first compiled the two test applications using the unmodified toolchain, and
then with Trellis to compare the results.

Application Performance. As the final part of our evaluation plan, we
designed a comprehensive use-case scenario for each of the two test applications
that exercises all program features using different user profiles, and measured
the end-to-end runtime. For this task, we used the GUI automation tool Linux
Desktop Testing Project (LDTP) [3], and configured the Trellis authentication
module to automatically allow privilege level change requests—as we are not
interested in timing the user interaction. For the StoreManager experiment, our
use-case involved viewing numerous inventory items as an ordinary user, creat-
ing and deleting items as a store manager, and manipulating user accounts as
a system administrator. The HomeBank use-case involved setting up new ac-
counts and budgets as a manager, scheduling transactions as an accountant, and
reviewing reports as an analyst. We ran these use-cases with and without Trellis
enabled, and computed the overall runtime overhead of our system.

5.3 Experiment Results

We performed the above micro-benchmarks 1000 times, compilation time mea-
surements 50 times, and application runtime measurements 300 times. The av-
erage runtimes over all runs are presented in Table 1.

The compilation time experiment shows that building a Trellis-aware exe-
cutable for StoreManager takes about 10% longer than compiling an unprotected
program. Although this overhead could suggest discernibly longer compilation
times for complex applications, we note that this is a one-time performance
trade-off for the significant access control enforcement benefits provided by Trel-
lis. Also note that, compared to StoreManager, the compilation time overhead for
HomeBank is much lower at only 0.36 %. This is because HomeBank’s codebase

is considerably larger than StoreManager’s, which leads to its normal, lengthy
compilation time over-shadowing the overhead imposed by Trellis. Similarly, de-
spite the seemingly large executable loading overhead of about 26%, we stress
that the absolute application launch time difference is only on the order of micro
seconds, and is unlikely to be noticed by users.

For the application runtime measurements, even though we do not have a
baseline to compare the privilege level change performance against, we expect
the overhead to be acceptable since privilege level changes are not expected to be
common operations during runtime. Moreover, they are likely to be completely
over-shadowed by human response times if an interactive authentication scheme
is used. The Trellis dynamic memory allocator, however, is shown to perform
significantly worse than the default glibc allocator. This could potentially lead
to performance drops in applications that perform heavy dynamic memory allo-
cation in small chunks, and could require optimization techniques such as using
pre-allocated memory caches. Despite this potential shortcoming, our final per-
formance tests show that the runtime impact on real-world applications, with
typical use-cases, is only around 4%.

5.4 Developer Effort

Unfortunately, systematically quantifying the developer effort required to adapt
an existing application to work with Trellis is a non-trivial task, requiring a large-
scale study with an extensive corpus of Trellis-enabled software. Therefore, we
provide anecdotal results obtained during our modifications to HomeBank.

The development of our multi-user version of HomeBank was carried out by
a single developer, one of the authors of this paper. While the developer had
over ten years of C programming experience, he had no prior experience with
the HomeBank application’s codebase. We measured the time taken during all
phases of active development, and report the results in the following.

Surprisingly, significant effort before development went into adapting Home-
Bank’s compilation chain (i.e., autoconf scripts, Makefiles, etc.) that is designed
around using GCC, to Trellis’s LLVM/Clang environment. We spent around 2
hours to be able to compile HomeBank with our system. Next, 4 hours were
taken to understand the codebase, and identify the relevant points that should
be modified to achieve the desired privilege separation. Finally, all Trellis anno-
tations and changes were applied and tested in another 2 hours. Overall, with a
single developer, and without prior familiarity with the application, HomeBank
could be adapted to work with Trellis in under 8 hours, which we believe to be
a reasonable and acceptable degree of developer effort.

5.5 Security Experiments

Trellis’ security properties hold by definition, and there are no heuristics for
attack detection or any probabilistic decisions involved in the system. In order
to empirically verify the effectiveness of Trellis against concrete, practical attack
scenarios, we created a set of exploits following the methodology laid out in [21].

Specifically, in [21], the authors define a novel class of access control vulner-
abilities called GUI Element Misuse (GEM), which involves bypassing an appli-
cation’s built-in access control checks through manipulation of its GUI elements
(e.g., by un-hiding a hidden button that allows access to privileged functional-
ity). GEM vulnerabilities exemplify a recent, high-impact instance of the type of
attacks that Trellis aims to address. Unfortunately, we were not able to use the
same set of applications that were exploited in [21] due to them being closed-
source Windows applications. Thus, we opted to perform our experiments on
StoreManager, and our extended multi-user version of HomeBank.

Following the steps outlined in [21], we first analyzed the test applications
using a GUI explorer tool Parasite [4]), and identified buttons that would trigger
privileged functionality. Using the same tool, we then attempted to forcefully
enable and interact with these GUI elements with an unprivileged user account,
using both the vanilla and Trellis-protected versions of the two test applications.

The vanilla versions of the programs were vulnerable to GEM attacks as we
expected, and we were able to execute privileged operations as an unprivileged
user. On the contrary, Trellis-enabled versions were protected against our at-
tacks; Trellis blocked our access attempts to privileged code pages, and simply
rolled back the applications to a default state that we defined in the correspond-
ing trellis exit wrapper routines.

6 Discussion & Limitations

A prerequisite for using Trellis is access to the application’s source code. As we
have discussed in Section 7, virtually all previous work also has not explored par-
titioning of binary executables directly. Given that many commercial multi-user
applications that would be suitable targets for privilege-level partitioning are
provided on a closed-source model, privilege separation on binary code appears
to be a challenging, yet promising future research direction. However, note that
Trellis aims to enforce privilege separation and access control over application-
specific functionality and data, and therefore, annotating or recompiling third-
party libraries used by the target application is not necessary.

Although the Trellis implementation we present in this paper is for applica-
tions written in C and C++, the high-level design we propose could be applied
to other compiled languages. However, application of our ideas to interpreted or
just-in-time-compiled languages requires a significant rethinking of the design.
In a similar vein, the Trellis static analyzer can only propagate the privilege level
tags up to the statically reachable portion of the call graph (i.e., as seen by the
compiler), thus leaving out callbacks or dynamic calls in general. Likewise, our
prototype implementation does not currently handle control flow transitions that
deviate from normal function calls and returns (e.g., jumps into signal handlers,
longjmp, C++ exception handlers across multiple levels of functions); however,
Trellis could be extended to support these cases in principle. Furthermore, com-
plex applications that use pre-allocated memory pools may necessitate further

developer effort to ensure that all dynamic memory regions are annotated cor-
rectly according to their appropriate privilege levels.

As evidenced by the dynamic memory allocator experiments in Section 5,
Trellis may lead to a discernible performance impact when applied to mem-
ory allocation intensive applications. Although this problem could be alleviated
through manual code optimization techniques such as using memory caching
techniques instead of frequent calls to trellis malloc, similar mechanisms
could also be built directly inside Trellis’s allocator to make the process transpar-
ent to application developers. Also note that using the Trellis memory allocator is
only required for protecting sensitive application data, and the system’s default
allocator (or any custom allocator) could still be used for all other, non-sensitive
memory allocations to avoid incurring runtime overhead.

One operation that Trellis does not yet support in a flexible, first-class man-
ner is declassification of data to a lower privilege level. This capability can be
useful in situations where the application developer can certify that informa-
tion computed in a higher privileged context can safely be released to a lower
privileged context in accordance with the application’s security policies.

Since Trellis is an application-level access control mechanism, it is not de-
signed to provide protection against attacks at lower-level system components
(e.g., operating system exploits, hardware backdoors, etc.). Likewise, Trellis is
designed strictly to support privilege separation; it does not aim to address com-
mon memory corruption vulnerabilities that may expose code and data within
the same privilege level to attacks. These threats are outside the scope of this
work, and Trellis should be used in conjunction with established defense mecha-
nisms that support memory integrity such as ASLR [27] and stack canaries [13].

In future work, we plan to investigate extensions of Trellis to address limi-
tations of the current approach. While our prototype implementation assumes
a strict ordering of user privileges, it provides the necessary primitives to en-
able the lattice-based privilege model we describe in Section 3.1. One promising
research direction is extending Trellis further to allow more complex access con-
trol models, to address concerns such as privacy of user profiles sharing the same
privilege level. Other potential avenues of research include lifting the guarantees
provided by the approach to higher-level languages, removing the need for source
code, and reification of declassification within the framework. Finally, the dy-
namic memory segment permission management component of Trellis could be
applied to other settings such as binary attack surface reduction by temporarily
disabling access to unneeded portions of an application’s address space.

7 Related Work

The principles of least privilege and privilege separation have long been studied
as prominent software design principles to minimize trusted code in programs
and contain damage in the face of security exploits [24,25]. The architectures of
many prevalent programs such as vsftpd [15], Postfix [28], and Sendmail [11] are
explicitly designed around these principles.

Prior work most similar to Trellis aims to apply these principles to existing
programs. Provos et al. [24] present a design methodology for applying privilege
separation to security sensitive system services. Here, applications are separated
into a privileged monitor and unprivileged slave processes that communicate
via IPC channels. The authors also demonstrate their approach by discussing
its application to OpenSSH. Kilpatrick [16] introduces a reusable framework to
ease the implementation of partitioned applications. Bittau et al. [9] propose
an application compartmentalization framework that provides a set of operating
system primitives to assist developers with partitioning programs. In this ap-
proach, developers mark allocated memory regions with tags, and create special
compartmentalized threads with specific access rights to the tagged memory.

While the above work lays down the guidelines for manually partitioning ap-
plications and provides tools for assistance, later work attempts to automate this
process. Brumley and Song [10] use a combination of code annotation and static
analysis to automatically separate C code into the aforementioned monitor and
slave parts. Wu et al. [32] instead employ a dynamic data dependency analysis,
which constructs a data dependency graph over the program’s functions, and
then partitions this into subgraphs representing least privilege components.

Trellis also uses code annotation and static analysis to perform privilege
separation; however, unlike the previous work, it does not partition applications
into separate processes. Instead, code and data at different privilege levels are
segregated into separate memory pages, and access control is enforced by the
operating system. Moreover, our system supports any number of privilege levels,
instead of only a privileged and an unprivileged partition.

Other works apply similar application partitioning techniques to different
security contexts. Kim and Zeldovich [17] present a Linux kernel module that
allows unprivileged system users to utilize Linux security features (e.g., allocating
new user IDs, setting up firewall rules, setting up chroot environments, etc.) to
confine applications and reduce the amount of code running as root. Murray and
Hand [22] discuss early ideas of segregating the trusted computing base of an
application into small, dynamic libraries. Chong et al. [12] proposes a system that
partitions web applications into JavaScript client-side code and Java server-side
code according to the specified information-flow policies. Zdancewic et al. [33],
and Zheng et al. [35] employ automatic code and data partitioning to address the
problem of secure distributed computation. In contrast to the above, Trellis aims
to address the problem of enforcing access control on multi-user applications that
transitions between different privilege levels during runtime.

Various software security frameworks provide access control features analo-
gous to Trellis for higher-level languages such as Java and Python, where access
control enforcement capabilities are provided on top of the corresponding virtual
machines or language interpreters. For instance, Apache Shiro [1] and Spring Se-
curity [6] allow Java applications to implement a role-based access control model
for enterprise applications. In comparison, Trellis is applicable to multi-user pro-
grams written in C and C++, and it introduces a novel architecture to enforce
hierarchical access control policies at the operating system level.

Trellis has comparable goals to History-Based Access Control (HBAC) [7], a
model that assigns privileges to code during runtime based on previous execution
history. This model largely relies on a runtime framework such as Java Virtual
Machine or Common Language Runtime. In contrast, Trellis allows software de-
velopers to define privilege levels statically at compile time, and enforces access
control at runtime. Similarly, Trellis shares some of its design principles with
Decentralized Information Flow Control (DIFC) (e.g., Asbestos [14], Flume [18],
HiStar [34]), which allows labeling data, and restricting its flow between appli-
cation and operating system components. Other related program confinement
solutions include various operating system mechanisms [5, 8, 23, 30], capability
systems [26, 31], and software-based fault isolation techniques [19, 20, 29]. Un-
like these, Trellis specifically addresses the problem of enforcing access control
within an application. In particular, our system protects applications against
vulnerabilities resulting from incorrect access control implementations, such as
the misuse of GUI elements as access control primitives [21].

8 Conclusion

In this paper, we presented Trellis, a novel approach for specifying and enforcing
access control policies in multi-user applications to separate code and data that
logically belongs to different privilege levels. Enforcing such policies in multi-
user applications is a responsibility that has heretofore been borne by applica-
tion developers; Trellis automates this critical, error-prone aspect of application
security. Our prototype implementation demonstrates that Trellis imposes a low
end-to-end runtime performance overhead.

Acknowledgments. We would like to thank our shepherd Vasileios P. Ke-
merlis for his helpful feedback. This work was supported by the National Science
Foundation (NSF) under grant CNS-1409738, and Secure Business Austria.

References

1. Apache Shiro. https://shiro.apache.org/index.html
2. HomeBank. http://homebank.free.fr
3. Linux Desktop Testing Project. http://ldtp.freedesktop.org/
4. Parasite. https://chipx86.github.io/gtkparasite
5. SELinux. http://selinuxproject.org
6. Spring Security. http://projects.spring.io/spring-security
7. Abad́ı, M., Fournet, C.: Access Control based on Execution History. In: NDSS

(2003)
8. Badger, L., Sterne, D., Sherman, D., Walker, K.M., Haghighat, S.A.: A Domain

and Type Enforcement UNIX Prototype. In: USENIX Security (1995)
9. Bittau, A., Marchenko, P., Handley, M., Karp, B.: Wedge: Splitting Applications

into Reduced-privilege Compartments. In: USENIX NSDI (2008)
10. Brumley, D., Song, D.: Privtrans: Automatically Partitioning Programs for Privi-

lege Separation. In: USENIX Security (2004)
11. Carson, M.E.: Sendmail without the Superuser. In: USENIX Security (1993)

12. Chong, S., Liu, J., Myers, A.C., Qi, X., Vikram, K., Zheng, L., Zheng, X.: Secure
Web Applications via Automatic Partitioning. In: ACM SOSP (2007)

13. Cowan, C., Pu, C., Maier, D., Walpole, J., Bakke, P., Beattie, S., Grier, A., Wa-
gle, P., Zhang, Q., Hinton, H.: StackGuard: Automatic Adaptive Detection and
Prevention of Buffer-Overflow Attacks. In: USENIX Security (1998)

14. Efstathopoulos, P., Krohn, M., VanDeBogart, S., Frey, C., Ziegler, D., Kohler, E.,
Mazières, D., Kaashoek, F., Morris, R.: Labels and Event Processes in the Asbestos
Operating System. In: ACM SOSP (2005)

15. Evans, C.: very secure FTP daemon. http://security.appspot.com/vsftpd.html
16. Kilpatrick, D.: Privman: A Library for Partitioning Applications. In: USENIX

ATC (2003)
17. Kim, T., Zeldovich, N.: Making Linux Protection Mechanisms Egalitarian with

UserFS. In: USENIX Security (2010)
18. Krohn, M., Yip, A., Brodsky, M., Cliffer, N., Kaashoek, M.F., Kohler, E., Morris,

R.: Information Flow Control for Standard OS Abstractions. In: ACM SOSP (2007)
19. McCamant, S., Morrisett, G.: Evaluating SFI for a CISC Architecture. In: USENIX

Security (2006)
20. Morrisett, G., Tan, G., Tassarotti, J., Tristan, J.B., Gan, E.: RockSalt: Better,

Faster, Stronger SFI for the x86. In: ACM PLDI (2012)
21. Mulliner, C., Robertson, W., Kirda, E.: Hidden GEMs: Automated Discovery of

Access Control Vulnerabilities in Graphical User Interfaces. In: IEEE S&P (2014)
22. Murray, D.G., Hand, S.: Privilege Separation Made Easy: Trusting Small Libraries

Not Big Processes. In: EuroSec (2008)
23. Peterson, D., Bishop, M., Pandey, R.: A Flexible Containment Mechanism for

Executing Untrusted Code. In: USENIX Security (2002)
24. Provos, N., Friedl, M., Honeyman, P.: Preventing Privilege Escalation. In: USENIX

Security (2003)
25. Saltzer, J.H.: Protection and the Control of Information Sharing in Multics. Com-

munications of ACM 17(7), 388–402 (1974)
26. Shapiro, J.S., Smith, J.M., Farber, D.J.: EROS: A Fast Capability System. In:

ACM SOSP (1999)
27. The PaX Team: PaX Address Space Layout Randomization (ASLR). http://pax.

grsecurity.net/docs/aslr.txt (2003)
28. Venema, W.: The Postfix Homepage. http://www.postfix.org/
29. Wahbe, R., Lucco, S., Anderson, T.E., Graham, S.L.: Efficient Software-based Fault

Isolation. In: ACM SOSP (1993)
30. Walker, K.M., Sterne, D.F., Badger, M.L., Petkac, M.J., Sherman, D.L., Oosten-

dorp, K.A.: Confining Root Programs with Domain and Type Enforcement (DTE).
In: USENIX Security (1996)

31. Wilkes, M.V.: The Cambridge CAP Computer and Its Operating System. North-
Holland Publishing Co. (1979)

32. Wu, Y., Sun, J., Liu, Y., Dong, J.S.: Automatically Partition Software into Least
Privilege Components Using Dynamic Data Dependency Analysis. In: IEEE/ACM
ASE (2013)

33. Zdancewic, S., Zheng, L., Nystrom, N., Myers, A.C.: Secure Program Partitioning.
ACM Transactions on Computer Systems 20(3), 283–328 (2002)

34. Zeldovich, N., Boyd-Wickizer, S., Kohler, E., Mazières, D.: Making Information
Flow Explicit in HiStar. In: USENIX OSDI (2006)

35. Zheng, L., Chong, S., Myers, A.C., Zdancewic, S.: Using Replication and Parti-
tioning to Build Secure Distributed Systems. In: IEEE S&P (2003)

