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Abstract—Extension architectures of popular web browsers
have been carefully studied by the research community; however,
the security impact of interactions between different extensions
installed on a given system has received comparatively little
attention. In this paper, we consider the impact of the lack of isola-
tion between traditional Firefox browser extensions, and identify
a novel extension-reuse vulnerability that allows adversaries
to launch stealthy attacks against users. This attack leverages
capability leaks from legitimate extensions to avoid the inclusion
of security-sensitive API calls within the malicious extension itself,
rendering extensions that use this technique difficult to detect
through the manual vetting process that underpins the security
of the Firefox extension ecosystem.

We then present CROSSFIRE, a lightweight static analyzer to
detect instances of extension-reuse vulnerabilities. CROSSFIRE
uses a multi-stage static analysis to efficiently identify potential
capability leaks in vulnerable, benign extensions. If a suspected
vulnerability is identified, CROSSFIRE then produces a proof-of-
concept exploit instance – or, alternatively, an exploit template
that can be adapted to rapidly craft a working attack that
validates the vulnerability.

To ascertain the prevalence of extension-reuse vulnerabilities,
we performed a detailed analysis of the top 10 Firefox extensions,
and ran further experiments on a random sample drawn from
the top 2,000. The results indicate that popular extensions,
downloaded by millions of users, contain numerous exploitable
extension-reuse vulnerabilities. A case study also provides anecdo-
tal evidence that malicious extensions exploiting extension-reuse
vulnerabilities are indeed effective at cloaking themselves from
extension vetters.

I. INTRODUCTION

Major web browsers, including Firefox, Chrome, Internet
Explorer, Safari, and Opera, provide extension mechanisms
that allow third parties to modify the browser’s behavior,
enhance its functionality and GUI, and integrate it with popular
web services. A large pool of browser extensions are published
in centralized repositories such as Firefox Add-ons [26] and
the Chrome Web Store [11], and are downloaded by millions
of users.

As a result of their increasing popularity, browser exten-
sions have also become increasingly targeted by attackers.
Extensions can often access private browsing information such
as cookies, history and password stores, and also system-
wide resources. For instance, Firefox exposes a rich API to
its extensions through XPCOM (Cross Platform Component
Object Model) [29] that allows nearly-unrestricted access to
sensitive system resources such as the filesystem and net-
work. Consequently, malicious extensions, or attacks directed
at legitimate extensions, pose a significant security risk to
users. The research community has recognized this threat,
presented studies and tools that analyze the security properties
of extensions [3], [4], [7], [8], [13], [16], [37], and proposed
various defenses [31], [35], [38].

However, despite the abundance of research focusing on
the security of browser extensions in isolation, to the best
of our knowledge, the possible interactions between multiple
browser extensions have not been well-studied from a security
perspective. In particular, the Firefox extension architecture
allows all JavaScript extensions installed on a system to share
the same JavaScript namespace, hence making it possible for
an extension to invoke the functionality (or modify the state) of
others. This problem has long been recognized as a namespace
pollution problem that can introduce errors if multiple exten-
sions define identical global names [27]. However, its impact
on security has not been studied so far.

In this paper, we first introduce a new class of Firefox
extension attacks that exploit extension-reuse vulnerabilities.
These vulnerabilities allow a seemingly innocuous extension
to reuse security-critical functionality provided by other legit-
imate, benign extensions to stealthily launch confused deputy-
style attacks. Malicious extensions that utilize this technique
would be significantly more difficult to detect by current
static or dynamic analysis techniques, or extension vetting
procedures. The malicious extension itself does not make any
sensitive API calls or resource accesses, which allows the
malicious behavior to stay hidden. In addition, automated
analysis of such malicious extensions would require covering
the code from the entire extension pool available to Firefox
users since the attack could utilize code from any and multiple
extensions, which would considerably increase the complexity
of the analysis task.

Next, we present a lightweight methodology to auto-
matically discover possible extension-reuse vulnerabilities,
which involves static data-flow analysis to identify flows
between globally accessible identifiers defined in extensions
and security-sensitive XPCOM calls. Using these flows, a
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malicious extension can indirectly access the XPCOM API. We
implement this technique in a tool that we call CROSSFIRE.
Our system produces two types of output: automatically-
generated exploits that can immediately be used to validate the
presence of vulnerabilities, and exploit templates that can be
adapted by users of the tool to rapidly construct working proof-
of-concept exploits. Similarly, CROSSFIRE’s output could be
utilized by extension developers to identify and secure the
vulnerable code sections.

Finally, we study the prevalence of extension-reuse vul-
nerabilities in a large pool of Firefox extensions, evaluate the
effectiveness of CROSSFIRE in discovering vulnerabilities, and
demonstrate that extension-reuse vulnerabilities have real-life
impact through concrete examples. The results of our analy-
sis and a random sample study show that many exploitable
extension-reuse vulnerabilities exist among the top 2,000 Fire-
fox extensions. In particular, 9 of the top 10 extensions are
exploitable. Furthermore, we present anecdotal evidence that
demonstrates the potential for malicious extensions that exploit
extension-reuse vulnerabilities to bypass Mozilla’s vetting pro-
cess.

In summary, this paper makes the following research con-
tributions.

• We present a novel class of attacks that abuse the
lack of isolation between Firefox extensions to perform
extension-reuse. This technique allows an outwardly be-
nign, but actually malicious, browser extension to reuse
functionality available in other legitimate extensions to
launch stealthy attacks.

• We introduce a lightweight static analysis, implemented
in a tool called CROSSFIRE, to automatically discover
extension-reuse vulnerabilities, generate exploits that con-
firm the presence of vulnerabilities, and output exploit
templates to assist users of the tool in rapidly constructing
proof-of-concept exploits.

• We provide a detailed analysis of the top 10 Firefox exten-
sions to report on the automatically-generated and human-
crafted exploits discovered, estimate the effort required to
construct a working exploit from exploit templates, and
demonstrate the practical impact of the generated attacks.

• We analyze a pool of the top 2,000 Firefox extensions,
and examine in detail a random sample of 323 (i.e.,
targeting a 5% confidence interval at a 95% confidence
level). We estimate the occurrence of extension-reuse
vulnerabilities, and report false positive rates for CROSS-
FIRE.

• We present anecdotal evidence we obtained by crafting a
sample extension that exploits an extension-reuse vulner-
ability in a popular extension, NoScript, and show that
it could pass the extension vetting process undiscovered.
(We highlight the fact that our sample extension did not
actually contain a malicious payload.)

II. PROBLEM STATEMENT

In this section, we briefly present some background infor-
mation on Firefox extension development, define the problem
of extension-reuse vulnerabilities and attacks in detail, and
explain our threat model.

A. Firefox Extensions

Firefox extensions, also called add-ons in Mozilla parlance,
add new functionality to the browser, change its behavior,
enhance the GUI, and interact with web page contents.
Firefox gives extensions access to a powerful API through
XPCOM [29], which is a framework that provides various
services to applications built on the Mozilla platform. As a
result, extensions can access sensitive system resources such
as the filesystem and network with the same privileges that the
browser process runs with.

Firefox extensions are written in JavaScript and XUL
(XML User Interface Language, which is an XML dialect used
by Mozilla to define graphical user interfaces). They commu-
nicate with XPCOM through a glue layer called XPConnect,
which exposes the various XPCOM components’ interfaces to
JavaScript. Extension developers may also utilize functionality
from third-party binaries, or they may create their own binary
XPCOM components; as a result, certain extensions contain a
mix of JavaScript and native code.

Recently, Mozilla developed an alternative framework for
extension development, called the Add-on SDK, as part of
the Jetpack project [30]. This framework provides extension
authors with a high-level API for an easy development process,
and addresses some of the security issues associated with
regular, legacy Firefox extensions, by restricting access to
XPCOM and isolating extension modules from each other.
While Mozilla encourages the use of the Jetpack framework,
a large body of popular legacy extensions are still in use.
Moreover, the simplified API of the Jetpack framework is
not feature-complete and, therefore, various extensions use a
mix of the legacy extension development techniques and Add-
on SDK to access more powerful XPCOM features where
necessary. In fact, a recent study [32] shows that in June 2014,
only 10.6% of the top 1,000 Firefox extensions were built
using the Add-on SDK. We have also performed a similar
preliminary experiment to verify those results. In particular,
we crawled the Mozilla Add-ons website for extensions tagged
“Jetpack”. Our results show that, as of October 2014, 12.0%
of the top 2,000 Firefox extensions are developed using the
Jetpack framework, while the remaining 88.0% are legacy
extensions. While these results indicate that the adoption of the
Jetpack framework may be increasing, a clear majority of the
top extensions are still using the legacy extension development
methods.

B. Extension-Reuse Vulnerabilities

Firefox extensions share the same JavaScript namespace
– in other words, every extension installed on a system can
freely access all of the JavaScript names defined in the global
scope by each extension. This problem has been identified
by the Mozilla community in the past, and it has been
recommended that each extension define its own namespace to
avoid JavaScript name collisions [27]. However, the security
implications thereof has been left largely unexplored so far. In
particular, this shared JavaScript namespace makes it possible
for extensions to read from and write to global variables
defined by others, call or override all global functions, and
modify instantiated objects.
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Figure 1. A sample extension-reuse attack showing the malicious extension
M reusing functionality from two legitimate extensions to indirectly access
the network and filesystem. In this way, the malicious extension discreetly
downloads a malicious file and executes it.

While a malicious extension might attempt to perform an
attack simply by invoking the corresponding API calls from its
own code, this malicious functionality is likely to be detected
before the extension can be made available on Mozilla’s online
repository. This is due to the requirement Mozilla imposes
on every extension to pass a review process that involves
functional testing and source code reviews by human extension
vetters [25]. Moreover, the security research community has
presented numerous analysis systems that can automatically
vet extension code to identify or block suspicious behavior
(see Section VI).

We observe that Firefox’s shared JavaScript namespace can
be exploited by a malicious extension to stealthily launch at-
tacks on the system, and bypass the countermeasures described
above. We define an extension-reuse vulnerability in a given
extension as a control or data flow from a global JavaScript
name to a security-critical API call (e.g., one that provides
access to the filesystem or the network, or allows arbitrary
code execution) that results in a capability leak. Since global
JavaScript names are available to all extensions, an attacker can
often identify a sufficient set of capability leaks to write a ma-
licious extension that indirectly invokes critical APIs through
other, legitimate extensions, to mount a confused deputy-style
attack. This attack scenario is illustrated in Figure 1. Here,
(1) a malicious extension M exploits a capability leak from
a legitimate extension X, (2,3) and uses it to download a
malware executable to disk. Next, (4) extension M exploits
another capability leak from a different extension Y to access
the filesystem, and (5) executes the previously downloaded
malware.

We can state the described attack scenario more formally
as follows.

We let:

C be the set of all capabilities provided by the
extension framework,

E be the set of extensions installed on the system,

Ce ⊆ C be the set of capabilities leaked by e ∈ E,

A ⊆ C be the set of capabilities required to launch
an attack a.

Then, an attacker can write a malicious extension to launch
the extension-reuse attack a if:

A ⊆
⋃
e∈E

Ce

Since the malicious extension’s code does not contain
direct calls to the APIs that enable the attack, detecting such
malicious activity through human reviews requires evaluation
of the malicious extension in the context of all possible
Firefox extensions, or extending automated analysis to cover
the entire extension code base, which renders the task costly
or infeasible.

Finally, we note that while it is possible to combine multi-
ple extension-reuse vulnerabilities in this way to craft complex
attacks, it is often sufficient to use a single vulnerability
to successfully launch damaging attacks, making this attack
practical even when a very small number of extensions are
installed on a system. For example, an attacker can simply
redirect a user that visits a certain URL to a phishing website,
or automatically load a web page containing a drive-by-
download exploit. In this paper, we assume that every instance
of an exploitable extension-reuse vulnerability may potentially
be used to compromise the security of a Firefox user, and refer
to all such exploits as attacks for brevity.

We demonstrate later in Section IV-A and Section IV-B
that many extensions downloaded by millions of users contain
exploitable extension-reuse vulnerabilities.

C. Threat Model

The threat model we consider for this work primarily
involves the common scenario in which an extension devel-
oper writes an extension, and submits it to Mozilla’s online
extension repository to make it publicly available. Users then
download and install the extensions to their systems.

In this scenario, we assume that an attacker has access
to the extension pool published on Mozilla Add-ons web
page, and that she can download and analyze them offline to
identify any extension-reuse vulnerabilities they might contain.
Subsequently, the attacker crafts a malicious extension that
exploits a set of extension-reuse vulnerabilities in any num-
ber of popular legitimate extensions to perform the desired
malicious activity, and submits it to Mozilla. We assume
that the malicious extension is subjected to Mozilla’s regular
extension review process, which includes functional testing and
human code reviews, before it is made available online. We do
not make any assumptions about whether the attacker makes
any deliberate attempts to make the extension review more
difficult, such as obfuscating the source code. However, we
assume that the attacker takes care to adhere to the minimum
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requirements for Mozilla reviewers to plausibly consider an
extension for acceptance. For example, we assume that the
malicious extension implements some innocuous functionality
as a cover.

On the user’s side, we assume that all installed extensions
have full access to XPCOM APIs, and that they can run with
the same privileges as the browser process, as all Firefox
extensions normally do. We also assume that the attacker
takes the necessary precautions so that the malicious extension
fails silently when the required set of vulnerable extensions to
perform the attack is not installed on the user’s system.

While the attack technique described in this work is also
applicable to certain Jetpack extensions that improperly export
global names, and those that mix the use of Add-on SDK
and the low-level APIs, this paper primarily focuses on legacy
Firefox extensions which constitute the majority of the pop-
ular Firefox extensions (i.e., 88.0%), as explained previously.
However, we also briefly discuss how extension-reuse attacks
could be adapted to Jetpack extensions, and the results of our
preliminary experiments with them in Section V.

Finally, note that this work does not consider attacks
on non-JavaScript components of extensions, such as binary
executables packaged together with the extension. Similarly,
binary browser plug-ins (e.g., Flash player, PDF viewers),
which are distinct from extensions, are outside the scope of
this paper.

III. ANALYSIS WITH CROSSFIRE

In this section, we present an overview of our tool called
CROSSFIRE, describe how we utilize static control- and data-
flow analysis to detect and exploit extension-reuse vulnerabil-
ities in Firefox extensions, explain several example vulnera-
bilities found by this analysis, and discuss limitations of the
analysis.

A high-level overview of the main components that com-
prise CROSSFIRE is presented in Figure 2. The system takes
as input the target extension’s source code and a database of
security-sensitive browser API calls that represent potential
sinks in the data-flow analysis. First, a JavaScript parser
module processes the code and generates the corresponding
abstract syntax tree (AST) representation. Next, the vulnera-
bility analyzer component processes this AST in two stages.
Stage 1 is a basic pass over the AST to compute a simple
approximation of the call graph, and to collect information
essential to performing the subsequent, more involved anal-
ysis. Using this information, the Stage 2 analyzer performs
a taint analysis from globally-exposed JavaScript names to
any security-sensitive APIs contained in the database. Finally,
the results of the analysis are fed into an exploit generator
component, which produces either an exploit to validate the
presence of the vulnerability, or provides the user with exploit
templates to assist in manually crafting malicious extensions.
The core components of CROSSFIRE are further discussed in
this section.

A. Vulnerability Analysis

Our approach to detecting extension-reuse vulnerabilities
is primarily an example of static data-flow analysis, where

Table I. EXAMPLES OF SECURITY-SENSITIVE XPCOM AND BROWSER
APIS USED BY CROSSFIRE AS DATA-FLOW SINKS DURING

VULNERABILITY ANALYSIS.

Operation API call

Code Execution initWithPath, launch
eval

File I/O initWithPath,
asyncCopy, asyncFetch

Network Access loadURI, saveURI, open

Clipboard Access getTransferData

Cookie Store Access getCookieString

Bookmarks Access exportBookmarksHTML
getBookmarkURI

Password Store Access getAllLogins

Preference Access getBranch

Event Listener Registration addEventListener

sources are globally-accessible JavaScript identifiers and sinks
are security-sensitive calls to XPCOM and other browser APIs.
In our attack model, an adversary can interact with legitimate
extensions in three ways: (i) by modifying the contents of
global variables (which might contain JavaScript primitives
or more complex objects) that flow into security-sensitive
APIs as call arguments, (ii) by directly invoking globally
exposed functions that, in turn, invoke those APIs later during
execution, or (iii) by overriding globally defined functions
(e.g., callbacks for security-sensitive event listeners). All of
these methods allow an attacker to indirectly access security-
sensitive APIs and, therefore, our analysis needs to consider
all globally defined identifiers as analysis sources. The goal of
the analysis, then, is to determine whether any of these global
variables and functions – which can be directly accessed by
a malicious extension – can allow an adversary to invoke a
sensitive API functions with attacker-controlled arguments.

A non-exhaustive list of the prominent sinks that are
considered by our analysis is presented in Table I. Flows from
global identifiers that are accessed or tampered with by the
attacker into these sinks could lead to attacks involving: binary
and JavaScript code execution; file and network I/O operations;
key logging by hooking the appropriate event listeners; and
access to and modification of private browsing data, stored
credentials, clipboard contents, and other potentially sensitive
information.

The static analysis proceeds in two stages. In Stage 1,
CROSSFIRE traverses the AST of the extension code to build
a more compact representation of the program suitable for
detecting extension-reuse vulnerabilities. This stage involves
a lightweight context-insensitive analysis to identify all glob-
ally exposed JavaScript identifiers and generate an under-
approximation of the function call graph. During this stage,
CROSSFIRE also performs an intraprocedural analysis on each
function it encounters to generate function summaries. The
summaries produced by CROSSFIRE capture data dependen-
cies between function arguments and return values, dependen-
cies and side effects on global variables, the presence of any
sinks in the function and, if present, whether any arguments
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Figure 2. An overview of the core components of CROSSFIRE.

or globals flow into those sinks. This intraprocedural analysis
uses a classic data-flow worklist algorithm that iterates until
convergence to a fixpoint is reached.

Next, CROSSFIRE uses the information collected in Stage 1
of the analysis to perform the second stage. In Stage 2,
CROSSFIRE inspects the call graph, identifies all possible paths
between sources and sinks, and discards the remaining paths.
On this set of retained paths, the system performs a forward
context-sensitive taint analysis, where context is defined as a
bounded call chain of depth k. For each non-constant global
identifier, a unique taint label is assigned. Then, the following
taint propagation policy is applied: (i) assignments to primitive
variables are tainted with the union of taint labels from the
right-hand side; (ii) assignments to an object field result in
propagation of the union of taint labels from the right-hand side
to the entire object; (iii) function invocations result in a transfer
of taint from parameters and referenced global variables to
any return value or modified global variables according to the
function summaries recovered from the prior intraprocedural
analysis.

If the analysis detects that a tainted value flows into a sink,
it performs various sink-specific checks to ensure that an actual
vulnerability exists. For instance, if the sink is an event listener
registration, CROSSFIRE checks the other arguments to the
corresponding API call to determine whether the event listened
to is security-sensitive (e.g., a key press event could be used for
key logging).1 Once a vulnerability is confirmed, CROSSFIRE
passes this information to the exploit generator component.

B. Exploit Generation

The exploit generator is invoked when a vulnerability is
found during static analysis. It uses predefined, sink-specific
rulesets to generate exploit samples. These rulesets specify
the sensitive arguments of the sinks, their types, and semantic
meaning (e.g., to indicate that a certain argument should be re-
placed with a malicious URL, or with the path to a binary). The

1We note that, in general, identifying specific events that listener functions
are registered for requires a string analysis. However, in practice, events are
virtually always specified directly as string literals in the function invocation.

generated exploits take the form of simple variable assignments
when the taint source is a global variable, or function calls
with malicious arguments if the source is a global function
definition.

While in certain cases the above approach directly yields a
working exploit, more complex data flows can make it difficult
to automatically generate attacks without performing a more
rigorous and precise analysis. These cases occur, for instance,
when the taint status of a variable cannot be tracked accurately
due to complex, nested control-flow structures, when tainted
values are sanitized before they reach the sinks, or when
invoking a vulnerable global function requires the attacker to
specify additional arguments, the types of which are unknown.
In such cases, CROSSFIRE instead produces an exploit tem-
plate to assist the user with manual rapid development of a
working proof-of-concept. In particular, the exploit template
includes the corresponding path in the call graph, relevant
source code line numbers, names of tainted identifiers and
their flows, and the target sinks reached. In effect, this template
declares that while a potential vulnerability exists, it cannot be
confirmed due to the unsoundness and imprecision inherent in
our approach, and manual intervention is required to confirm
it. We discuss in Section IV-C how long it takes for a human
analyst to create working exploits from these templates.

C. Example Vulnerabilities

In the following, we provide examples of vulnerabilities
found in extensions listed among top 10 on the Mozilla
Add-ons repository at the time of writing, and show exploits
generated by CROSSFIRE that can be used in concrete attack
scenarios.

1) Open URL: Flash Video Downloader is an extension
that allows users to extract and download multimedia content
embedded inside Flash files. We discovered a vulnerability in
this extension that allows opening and displaying the contents
of a URL in a new browser tab. Since the effects of exploiting
this vulnerability is visible to the user, it would best be used
in conjunction with attacks that require user interaction, such
as opening a phishing page when the user attempts to visit a
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specific legitimate URL. The code presented below is one of
the simpler vulnerabilities to exploit, only requiring a method
invocation on a global object fvd_single, with a single
parameter passed by the attacker. It is an example of a working
proof-of-concept exploit that was automatically generated by
CROSSFIRE.

// Attacker simply calls the global function
// below with a malicious value $url
fvd_single.navigate_url($url);

2) Send HTTP Request: This vulnerability in Web of Trust,
an extension that crowdsources security ratings for websites,
sends an HTTP request to an attacker-specified URL. However,
unlike the previous example, it does not display the contents
to the user. As such, it can be used to communicate with,
or exfiltrate data to, an attacker-controlled server using query
strings. CROSSFIRE provides a detailed exploit template for
this vulnerability, and crafting the code shown below only
requires a quick manual analysis to determine the types of
arguments that should be passed to the method call.

// Attacker sets a global server $url
wot_api_comments.server = $url;
wot_api_comments.call("", "", {});

3) Download File: This is a vulnerability in FlashGot
Mass Downloader, an extension that integrates various external
download managers with Firefox, which allows an attacker to
download a list of files. Unlike the other exploits that can send
a GET request to a URL to achieve the same task, exploiting
this vulnerability does not display Firefox’s download prompt.
Instead, the files are downloaded silently, in a completely
transparent manner. This could be exploited, for instance,
together with a file execution vulnerability to download and
run malware. For the exploit code shown below, CROSSFIRE
provides an exploit template that indicates the relationship
between the object array passed to the vulnerable method and
the sink it flows into, but the specific structure of the objects
inside the array cannot be detected automatically and must be
determined through manual analysis.

// Attacker creates an array of
// file $url and $path combinations
var files = [{
href: $url,
description: "",
fname: $path,
noRedir: true
},
// ...more files if needed...

];
gFlashGotService.download(files);

4) Execute File: Here, we present two vulnerabilities that
could be used to execute binary files, the first one in Firebug,
an extension that provides a set of web developer tools, and
the other in Greasemonkey, which allows users to modify the
displayed website content using custom JavaScript code.

The first vulnerability results from exploiting code that is
normally used by Firebug for opening a file of interest in an

external editor. By changing the editor’s path, the attacker can
control which file to execute.

// Attacker specifies the path to an
// executable as $exe and its command
// line arguments as $args
var malicious_exe = {};
malicious_exe.executable = $exe;
malicious_exe.cmdline = $args;

// The first argument needs to be a valid
// local file or directory on the system;
// a standard root directory will do.
Firebug.ExternalEditors.open(
"file:///C:/", malicious_exe);

The latter vulnerability, in Greasemonkey, is found in code
that provides similar functionality for modifying script files in
an external editor. However, this time the path to the external
editor is set by changing a preference value.

// Attacker chooses a path $exe
var gPrefMan = new GM_PrefManager();
gPrefMan.setValue("editor", $exe);
GM_util.openInEditor();

D. Implementation

We implemented CROSSFIRE’s static analyzer and ex-
ploit generator components in approximately 1.2K lines of
JavaScript code. For JavaScript parsing and AST genera-
tion, we used a modified version of Esprima [1], a popular
JavaScript parsing framework. Our modifications to Esprima
serve to adapt the parser to Mozilla-specific JavaScript lan-
guage extensions, and make the tool resilient to certain types of
syntax errors in extension code that we encountered frequently
during our experiments.

E. Limitations

The primary goals of this paper is to introduce and high-
light extension-reuse vulnerabilities, quantify the prevalence
of the problem among popular extensions, and demonstrate its
impact on current extension vetting procedures. As such, the
static analyzer component of CROSSFIRE we describe in this
section is specifically tailored for discovering extension-reuse
vulnerabilities as opposed to striving for a sound and precise
analysis. In fact, the analysis we describe here is decidedly
unsound: we do not attempt to tackle all of the well-known
challenges of analyzing JavaScript programs, such as inferring
dynamic types, handling prototype-based inheritance, resolv-
ing variable scopes, or handling string evaluation performed
by eval or setTimeout statements.

While this lack of soundness and precision can be viewed
as a deficiency, we argue that instead – in the spirit of
“soundiness” [23] – it is a strength. Indeed, we explicitly
trade off traditional goals of static program analysis in favor
of efficiency, as our particular goal is oriented more towards
best-effort discovery of extension-reuse vulnerabilities and
less towards proving the absence of these vulnerabilities.
We also point out that, as our evaluation demonstrates in
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Section IV, our analysis successful identifies numerous real-
world instances of extension-reuse vulnerabilities, and in many
cases automatically generates a working proof-of-concept at-
tack despite its inherent limitations.

IV. EVALUATION

In this section, we survey the extension-reuse vulnerabil-
ities we have discovered in the top 10 Firefox extensions,
present an analysis of 323 extensions randomly sampled from
the Firefox Add-ons extension repository, quantify the perfor-
mance of CROSSFIRE and the human effort required to write
working extension-reuse exploits, and present a case study
showing anecdotal evidence that extension-reuse vulnerabili-
ties have practical impact.

A. Vulnerabilities in Top Extensions

As a first step in understanding the impact and prevalence
of extension-reuse vulnerabilities, we ran CROSSFIRE on the
top 10 most downloaded Firefox extensions (excluding those
that use the Jetpack framework). Furthermore, we investigated
all of the reported vulnerabilities manually, and classified them
as either true alerts or false positives. Detailed results of this
analysis are presented in Table II.

These results indicate that 9 out of the top 10 Firefox
extensions contain several examples of extension-reuse vul-
nerabilities, with only Adblock Plus being impervious to this
attack. CROSSFIRE was able to automatically generate at least
one working exploit for five of the tested extensions, while
we constructed many other working exploits through manual
analysis with the help of CROSSFIRE’s exploit templates. (We
discuss the human effort required for the manual analysis task
later in Section IV-C.) Given that the extensions we tested have
been downloaded millions of times according to the Mozilla
Add-ons website, we surmise that a large number of Firefox
users are affected by extension-reuse vulnerabilities.

One interesting observation we obtained through this ex-
periment is the large number of global variables and function
definitions in all of the tested extensions. Indeed, according
to Mozilla, JavaScript namespace pollution is one of the most
encountered issues during extension reviews [25]. This sug-
gests that attempting to mitigate extension-reuse vulnerabilities
through new guidelines for developers that discourage the use
of globals, or through a more involved code review process
for vetters to manually verify the secure use of globals, would
not be effective solutions to the problem. This highlights
once again that manual human analysis, while capable of
discovering classes of vulnerabilities that elude the most
sophisticated automated analysis, is nevertheless fallible. In
particular, manual review simply cannot achieve the scale or
consistency that sophisticated analyses promise.

Finally, we observed that the number of false positives, or
non-exploitable vulnerabilities reported by CROSSFIRE, varied
with the tested extensions, ranging from 0% to 100% of the
detected vulnerabilities. However, we stress that even when
the false positive rates were high, the actual number of false
vulnerabilities reported were small (e.g., four vulnerabilities
were found for Adblock, yielding a 100% false positive rate),
making their management and elimination via manual analysis
an easy and quick task. We revisit the discussion of false
positives on a larger dataset in the next section.

Network Access

169

File I/O

40 Event Listener Registration

30
Preference Access

9
Code Execution7

Figure 3. Breakdown of true positive vulnerabilities discovered by CROSS-
FIRE by category.

B. Random Sample Study of Extensions

After our analysis of the top 10 extensions, in order to
better understand how widespread extensions-reuse vulnera-
bilities are and how CROSSFIRE performs in terms of false
positives, we selected a random sample of extensions from
those available on Mozilla Add-ons website and analyzed
them.

In this experiment, we chose to limit our population to
the top 2,000 Firefox extensions. This was due to our ob-
servation that as the extension popularity further decreased,
we frequently encountered outdated extensions that were not
compatible with modern versions of Firefox we used in our
experiments. When choosing our sample size, we targeted a
confidence interval of 5% at a 95% confidence level. According
to the standard theory on confidence intervals for proportions
(e.g., [15], Chapter 13), a sample size of 323 is sufficient to
reach this target accuracy. Consequently, we selected a random
sample consisting of 323 extensions for our experiment.

First, we ran CROSSFIRE on our random sample, which
yielded a total of 351 extension-reuse vulnerabilities. Next, we
conducted a detailed manual analysis to identify vulnerability
reports that represent false positives. The breakdown of our
analysis is presented in Table IV, and the number of true
positive vulnerabilities discovered in each category is shown
in Figure 3.

We also ran CROSSFIRE on the full dataset of the top
2,000 extensions. A summary of the statistical properties of
the dataset is presented in Table III. Based on the estimated
true positive rate of 72.65% we obtained in the random sample
study within a 5% confidence interval, and given that CROSS-
FIRE found 4,462 potential vulnerabilities in the full dataset,
we estimate that more than 3018 of these vulnerabilities are
exploitable on the lower bound of our confidence interval with
95% confidence.

We point out that while the obtained false positive rate
of 27.35% seems relatively high, the actual number of false
vulnerabilities reported per analyzed extension is low, and as
is evidenced by the human analysis time estimates presented
in the next section, they can be quickly filtered out.
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Table II. DETAILED ANALYSIS RESULTS OF THE TOP 10 FIREFOX EXTENSIONS.

Globals Exploits

Extension Name Var. Func. Sinks Auto Manual False Pos. Attack Types

Adblock Plus 218 570 17 0 (0.0%) 0 (0.0%) 4 (100.0%) –
Video DownloadHelper 46 707 74 0 (0.0%) 15 (100.0%) 0 (0.0%) Code exec., File, Network
Firebug 71 378 40 0 (0.0%) 1 (100.0%) 0 (0.0%) Code exec.
NoScript 40 1142 33 2 (22.2%) 5 (55.6%) 2 (22.2%) Code exec., Network
DownThemAll! 53 632 14 0 (0.0%) 5 (100.0%) 0 (0.0%) Network, Preference
Greasemonkey 121 362 17 1 (16.7%) 3 (50.0%) 2 (33.3%) Code exec., File, Network
Web of Trust 56 601 275 1 (2.0%) 33 (67.4%) 15 (30.6%) File, Network, Cookie
Flash Video Down. 50 123 79 4 (66.7%) 1 (16.7%) 1 (16.7%) File, Network, Preference
FlashGot Mass Down. 36 555 53 3 (17.7%) 5 (29.4%) 9 (52.9%) Code exec., File, Network
Down. YouTube Videos 2 22 6 0 (0.0%) 2 (66.7%) 1 (33.3%) File, Preference

Table III. FIVE-NUMBER SUMMARIES, MEAN, AND TOTAL VALUES OF CROSSFIRE’S STATIC ANALYSIS RESULTS. THE EXPERIMENT IS PERFORMED ON
THE TOP 2,000 FIREFOX EXTENSIONS.

Metric Min Q1 Median Mean Q3 Max Total

Global Variables 0.00 1.00 2.00 11.32 9.00 422.00 22626
Global Functions 0.00 4.00 21.00 80.94 77.75 5460.00 161728
Sinks 0.00 0.00 2.00 6.33 7.00 278.00 12641
Vulnerabilities 0.00 0.00 0.00 2.23 2.00 238.00 4462

Table IV. SUMMARY OF THE TRUE AND FALSE POSITIVES DETECTED
BY CROSSFIRE WHEN ANALYZING 323 EXTENSIONS RANDOMLY SAMPLED

FROM TOP 2,000 FIREFOX EXTENSIONS.

Total Vulnerabilities 351

True Positives 255 72.65%

Automated 51 14.53%
Manual 204 58.12%

False Positives 96 27.35%

C. Performance & Manual Effort

We characterize the overall performance of CROSSFIRE
using two metrics: automatic vulnerability analysis runtime,
and the manual effort required to construct working proof-of-
concept exploits from exploit templates generated by CROSS-
FIRE.

For the first metric, we ran our system on our entire dataset
of the top 2,000 Firefox extensions using a commodity desktop
computer (3.40 GHz Intel Core i7-4770 CPU, 16 GB memory,
running Ubuntu 14.0.1), and recorded the runtime required
to analyze each extension. To quantify the human analysis
time, during the random sample experiment described in
Section IV-B, we timed our analyst’s manual analysis sessions
for each extension to obtain an estimate value. Each extension
was analyzed by the same analyst, and our calculations for
this metric exclude those extensions in our random sample for
which no vulnerability was detected. The analyst performing
the task was a graduate computer science student that had less
than one year of experience with JavaScript programming and
Firefox extension development.

Note that for our performance computations on the latter
metric, we do not use the analysis timings obtained for each
individual vulnerability. Instead, we estimate the analysis time
for individual vulnerabilities in an extension by first measuring
the total analysis time for that extension, and then computing

its average over all working exploits found. We perform this
operation due to our observation that manual analysis of
the first reported vulnerability in an extension often takes
significantly longer than investigating the rest. This is because
the analyst spends extra time to understand the code during
the initial analysis, and then performs the subsequent analyses
much faster in light of this contextual knowledge. This results
in a small number of long session durations, followed by
a large number of very short analysis sessions. Instead of
reporting biased results, we believe our estimation approach
reflects the human analysis burden more accurately. The five-
number summaries and arithmetic averages of these perfor-
mance metrics are presented in Table V. The results for the
automatic static analysis performance show that CROSSFIRE
can analyze the majority of extensions in less than a second.
Note that, here, the mean analysis time is much larger than the
median, and there is a large gap between the third quartile (i.e.,
Q3) and the maximum value. This is due to a small number
of extensions in our dataset that contain unusually large code
bases. For example, the extension Local Load [5], which
allows its users to use local copies of common third-party
JavaScript libraries instead of downloading them when loading
web pages, contains the entire source code for several complex
libraries and their various popular versions. As a result, our
analysis of Local Load required 763.91 seconds, the maximum
in our experiment. Despite these outliers, that CROSSFIRE
performs efficiently with most extensions is further illustrated
by the fact that the 95th percentile in our measurements is 1.42
seconds, and the 99th percentile is 6.80 seconds.

For the human analysis time measurements, the results
indicate that, on average, a working proof-of-concept attack
can be crafted in less then 10 minutes from the template
generated by CROSSFIRE. In our experiments, the longest
analysis session was still shorter than 40 minutes, which
suggests that the human burden of working toward actual
attacks from exploit templates is a manageable task even with
a single analyst.
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Table V. FIVE-NUMBER SUMMARIES AND THE MEAN TIME MEASUREMENTS OF AUTOMATIC STATIC ANALYSIS BY CROSSFIRE, AND HUMAN ANALYSIS
TO CRAFT WORKING EXPLOITS FROM EXPLOIT TEMPLATES.

Performance Metric Min Q1 Median Mean Q3 Max

Static Analysis Runtime 0.05 sec 0.18 sec 0.28 sec 1.06 sec 0.51 sec 763.91 sec

Human Analysis Burden 0.50 min 3.20 min 4.50 min 6.31 min 9.18 min 36.00 min

Figure 4. Screenshots from Mozilla Add-ons website showing the accepted
extension and its fully reviewed status.

D. Case Study: Submitting an Extension to Mozilla Add-ons
Repository

Due to the ethical issues surrounding the testing of
extension-reuse exploits in a real-world setting, we were
unable to conduct a detailed scientific study of the attack in
practice. Instead, we opted to perform a simple case study
to anecdotally demonstrate the attack’s practical impact, and
to encourage more rigorous future studies under controlled
environments.

For this case study, we developed an extension called
ValidateThisWebsite, which allowed users to automatically run
a public markup validation service on the displayed web page
when a button on the browser’s toolbar is clicked. However,
we also embedded in the code a cross-extension call to the
popular script and plug-in blocker extension NoScript [14],
which allowed our extension to stealthily connect to a URL of
our choosing. This cross-extension call, made via the global
variable noscriptBM defined in NoScript’s source code, is
presented below.

// Attacker chooses $url
noscriptBM.placesUtils.__ns.__global__.ns.

loadErrorPage(window[1], $url);

Our extension consisted of approximately 50 lines of
JavaScript code, and did not contain code obfuscation or any
other attempt to hinder analysis. We submitted our extension
to the Mozilla Add-ons repository, and opted for the full review
option. This option represents the highest degree of scrutiny
offered by Mozilla, and involves functional testing and human
code reviews for security [25].

Our extension successfully passed the initial automated
analysis upon submission, and subsequently passed the full
review process without receiving any security warnings. We
were notified of its acceptance to the online repository two
days after its submission; see Figure 4 for screenshots of the
listing on the Mozilla Add-ons website. We downloaded and
tested the online version of our extension, and verified that the
cross-extension call indeed works as intended. This case study,
while only a single data point, serves as an existence proof that
malicious extensions exploiting extension-reuse vulnerabilities
can indeed pass the vetting process undetected, and that they
pose a real threat to Firefox users.

Ethical Considerations. This case study was designed in
the same vein as those presented in two recent prominent
security research publications [33], [39].

We stress that the extension we developed did not actually
contain a malicious URL, but instead a harmless link. Specif-
ically, we registered the domain name “validatethis.website”
for this case study, and set up our cross-extension call to open
“http://validatethis.website/” which did not link to any content.
Note that while harmless, this approach is still representative
of an actual attack, because an attacker could use a similar
strategy to first include an empty link in the extension, only
to update the URL with malicious content after passing the
vetting process.

We have never publicly advertised our extension, and we
took it down from the repository promptly after receiving the
acceptance notification. We did not record or otherwise track
any activity on the sample domain that might have taken place
during the vetting of our extension. Finally, we performed
this case study only once to avoid unnecessarily burdening
the extension reviewers.

V. DISCUSSION

In this section, we touch upon some of the interesting
questions left open in this paper, and discuss possible future
research directions.

A. Extension-Reuse Vulnerabilities in Jetpack Extensions

While this work primarily focused on the vulnerabilities in
legacy Firefox extensions due to their popularity and preva-
lence, we must stress that Jetpack extensions are not immune
to extension-reuse attacks. Here, we briefly discuss a variation
of the attack that specifically targets Jetpack extensions, and
report on the results of our preliminary experiments with them.

Jetpack extensions are developed and packaged as a col-
lection of isolated modules. In order to include and reuse these
modules in extension code, module authors are first required
to explicitly export variables and functions defined in their
modules. Later, extension developers can load these modules
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into their code using the provided require() function, and
freely access the exported interfaces. In this setting, exported
interfaces are analogous to the global variables that could be
exploited in legacy extensions. In other words, an attacker
can analyze the modules included in a Jetpack extension to
identify data flows from exported variables and functions into
security-sensitive APIs, and reuse these capability leaks to craft
extension-reuse attacks.

To verify the practicality of this attack, we modified
CROSSFIRE to inspect the modules in Jetpack extensions and
apply its static analysis to detect data flows from exported
module interfaces into critical APIs. We analyzed the entire
set of 1,028 Jetpack extensions hosted on the Mozilla Add-
ons repository and found that 5 of those extensions contained
a total of 8 vulnerabilities. We did not encounter false posi-
tives in this experiment, possibly due to the narrower attack
surface. CROSSFIRE generated working attacks for six of the
vulnerabilities automatically, while two required manual work
assisted by exploit templates.

As an example, one of the vulnerable extensions is Live
Stream Notifier, which shows a notification when a Twitch
stream goes live. The concrete exploit shown below retrieves
the contents of an attacker-specified file on disk.

// Attacker loads vulnerable module...
var utils = require("utils");

// ...and chooses a path $file
utils.getFileContents($file);

These findings demonstrate that Jetpack extensions are ef-
fective at narrowing down the attack surface by limiting the
number of globally exposed interfaces. However, they are
still not immune to extension-reuse vulnerabilities through
explicitly-exported variables and functions, and developers
must take care to prevent dangerous capability leaks.

B. Implications on Current Extension Vetting Procedures

Our finding that extension-reuse attacks are possible and
pose a threat to Firefox users – even for Jetpack extensions,
as described above – has direct implications for the current
vetting scheme used for the Firefox browser. Naturally, we
do not intend our work to be interpreted as an attack on the
efforts of Firefox’s cadre of extension vetters, who have an
important and difficult job. However, since the vetting process
is the fundamental defense against malicious extensions in the
Firefox ecosystem, we believe it is imperative that (i) extension
vetters be made aware of the dangers posed by extension-reuse
vulnerabilities, and that (ii) tool support be made available to
vetters to supplement the manual analyses and testing they
perform. We are not the first to propose automated techniques
for discovering extension vulnerabilities; we touch on this area
of related work in Section VI. Nevertheless, our experiments
demonstrate that current tooling is insufficient to handle this
class of attack, and the techniques we propose can serve as
a first step towards bolstering the vetting process to detect
extension-reuse vulnerabilities.

C. Future Work

One important issue we omitted in this work is the likeli-
hood that an attacker would be able to find a sufficient set of
extension-reuse vulnerabilities to launch a desired attack on a
target system. On one hand, given that many practical attacks
are possible by exploiting only one or two vulnerabilities, and
that nine of the top 10 extensions contain a large number of
such vulnerabilities, we intuitively expect the possibility of a
successful attack to be high in many cases. On the other hand,
a scientific quantification of this issue would require a large-
scale survey of Firefox users, and a detailed study of their
extension usage behavior.

Another promising venue for future research is extension-
reuse attack detection and mitigation techniques. Clearly, the
highest assurance against such attacks would be possible by
directly fixing the root cause of the issue, in other words
by isolating the JavaScript contexts of Firefox extensions.
However, the complexity and cost of such an intrusive change
to the browser’s extension architecture needs to be investigated
further. Moreover, it is not clear whether the shared JavaScript
namespace has any legitimate functionality, or if it is manda-
tory for the browser or certain extensions to work correctly.

A simpler, albeit less effective, detection or mitigation
approach would be extending the existing solutions for browser
extension analysis, verification, and runtime policy enforce-
ment (e.g., those described later in Section VI) to detect cross-
extension interactions, for instance by devising more accurate
call site provenance techniques.

Finally, Mozilla announced on August 21, 2015 upcoming
major changes to Firefox extensions, including the imple-
mentation of a new add-on API called WebExtensions [28].
Although details and security implications of these changes
were not clear at the time of writing, we expect that a
systematic security analysis of WebExtensions would be a
promising future research direction.

VI. RELATED WORK

The security community has produced a large body of
work investigating the security properties of browser extension
mechanisms. Barth et al. [4] present a study of 25 Firefox
extensions and point out that most of them have unneces-
sarily high privileges. Subsequently, they propose a security-
hardened extension architecture for Chrome, designed around
the principles of least privilege and privilege separation. Carlini
et al. [6] and Liu et al. [21] further scrutinize Chrome’s
extension architecture, present additional security threats, and
propose various countermeasures. Karim et al. [18] instead
analyze Firefox’s more recent Jetpack framework, identify
modules with capability leaks and over-privileged extensions,
and present a methodology to convert legacy Firefox exten-
sions into Jetpack extensions. While these efforts direct their
attention to desktop browsers, Marston et al. [24] focus on
securing Firefox extensions on Android devices. Despite the
abundance of research in the field, our paper represents the
first work introducing and specifically addressing the problem
of extensions-reuse vulnerabilities.

Another class of work proposes static and dynamic analysis
techniques to identify security flaws in browser extensions.

10



Kapravelos et al. [16] describe Hulk, a dynamic analysis
system that monitors extension activities through the use of
fuzzing techniques and HoneyPages that adapt to extensions’
expectations. They analyze more than 48K Chrome extensions
and report on the malicious extensions they encountered.
Bandhakavi et al. [2], [3] propose a static information flow
analysis framework for JavaScript extensions called VEX, and
analyze more than 2K Firefox extensions. Guha et al. [13]
present IBEX, a framework that allows extension developers
to create fine-grained access control and data-flow policies,
and a static analysis methodology to verify these. Djeric et
al. [8] and Dhawan et al. [7] propose dynamic analyses to track
untrusted data inside the browser, and detect extensions that
attempt to compromise the system’s security. Similarly, Wang
et al. [37] examine the behavior of Firefox extensions using
an instrumented browser. Some of the analyses described in
these papers could potentially be extended to detect extension-
reuse vulnerabilities or malicious extensions that exploit the
same. However, carrying out this task reliably would require
incorporating the entire extension pool available to users into
the analysis, which would almost certainly present problems
of scalability and questions of coverage.

Other researchers have proposed execution monitors for
runtime policy enforcement on browser extensions. Onarlioglu
et al. [31] describe Sentinel, a lightweight XPCOM policy
enforcer for JavaScript Firefox extensions. An extended ver-
sion of this work [32] provides a partial and limited defense
against extension-reuse attacks by protecting global variables
against tampering; however, reuse of globally-exposed sensi-
tive functions (e.g., attacks those described in Section III-C)
remain unaddressed. Ter Louw et al. [34], [35] present an ex-
tension integrity checker and an XPCOM policy enforcement
framework built into Firefox. As opposed to the previously
mentioned work that offers a flexible policy framework, Wang
et al. [38] propose an approach that targets two specific
policies. Malicious extensions that exploit extension-reuse
vulnerabilities would be able to bypass the defenses described
in this class of work because, in our attack model, malicious
extensions do not violate security policies but instead reuse
functionality from legitimate extensions that are not subject to
policy restrictions in a confused deputy-style attack. However,
as before, policy enforcement systems could potentially be
adapted to this new attack model through techniques that can
determine the provenance of security-critical operations more
accurately across different extensions.

Recent work by Karim et al. [17] presents a technique
for transforming legacy Firefox extensions to use the Jetpack
framework. As previously discussed, Jetpack extensions are
not immune to extension-reuse vulnerabilities; however, tech-
niques that allow for automatically porting legacy extensions
to modern extension frameworks could potentially reduce
exploitable capability leaks.

Freeman and Liverani [9], [22] have released two whitepa-
pers that describe Cross Context Scripting (XCS) vulnera-
bilities, and demonstrate attack scenarios targeting Firefox.
XCS constitutes a distinct class of attacks that deal with
executing untrusted content retrieved from web pages inside
the browser’s trusted zone, and is not addressed in our paper.

Earlier work on web browsers mostly focused on securing
native plug-ins and third-party applications that run within

browsers, such as Adobe Flash player. For example, Li et
al. [20] and Kirda et al. [19] present techniques to contain
spyware-like behavior in Internet Explorer’s Browser Helper
Objects. Other work [10], [12], [36], [40] provides secure
execution environments inside browsers through sandboxing
and isolation concepts borrowed from the field of operating
systems research. This line of work targets a different problem
from the setting of browser extension security addressed in this
paper.

VII. CONCLUSIONS

In this paper, we introduced a novel class of attacks
stemming from extension-reuse vulnerabilities, which arises
from the lack of isolation between Firefox extensions, and
results in capability leaks through global identifiers defined
in the shared JavaScript namespace of the browser. We then
presented CROSSFIRE, a lightweight static analysis tool that
can quickly analyze a large pool of extensions, automatically
detect extension-reuse vulnerabilities they contain, and, finally,
generate proof-of-concept exploits and exploit templates that
can be used for rapid exploit construction by a human analyst
to validate reported vulnerabilities. We also experimented with
CROSSFIRE in order to characterize its false positive rate due
to the inherent limitations of our static analysis, as well as the
human effort required to eliminate false vulnerability reports
and produce working exploit code from exploit templates. Our
results indicate that, on average, a single human analyst can
produce an exploit under 10 minutes and, despite a relatively
high false positive rate, the absolute false positive numbers
remain low and manageable.

Our detailed analysis of the top 10 extensions, a random
sample study of the top 2,000 extensions, and a case study
demonstrating the difficulty of manually identifying extension-
reuse exploits all support our claim that extension-reuse vul-
nerabilities are real, practical, and are present in large numbers
in popular extensions downloaded by millions of users. In
addition, our experiments with vulnerable Jetpack extension
show that, even though Jetpack extensions have a narrower
attack surface compared to legacy extensions, they are not
immune to extension-reuse attacks.
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