
Overhaul: Input-Driven Access Control for Better
Privacy on Traditional Operating Systems

Kaan Onarlioglu, William Robertson, Engin Kirda
Northeastern University, Boston, USA
{onarliog,wkr,ek}@ccs.neu.edu

Abstract—The prevailing security model for OSes focuses on
isolating users from each other; however, the changing computing
landscape has led to the extension of traditional access control
models for single-user devices. Modern OSes for mobile devices
such as iOS and Android have taken the opportunity provided
by these new platforms to introduce permission systems in which
users can manage access to sensitive resources during application
installation or runtime. One drawback of similar efforts on
desktop environments is that applications must be rewritten with
this security model in mind, which hinders traditional OSes from
enjoying the benefits of user-driven access control.

We present a novel architecture for retrofitting a dynamic,
input-driven access control model into traditional OSes. In this
model, access to privacy-sensitive resources is mediated based on
the temporal proximity of user interactions to access requests, and
requests are communicated back to the user via visual alerts.
We present a prototype implementation and demonstrate how
input-driven access control can be realized for resources such
as the microphone, camera, clipboard, and screen contents. Our
approach is transparent to applications and users, and incurs no
discernible performance overhead.

I. INTRODUCTION

The prevailing security model for traditional operating
systems focuses on protecting users from each other. For
instance, the UNIX access control model provides a framework
for isolating users from each other through a combination
of user identifiers, group identifiers, and process-based pro-
tection domains. The fundamental assumption underlying this
approach to security is that the primary threat to user data
originates from other users of a shared computing system.

The traditional user-based security model makes sense in
the context of timesharing systems, where many users share
access to a common pool of computing resources. However, the
modern proliferation of inexpensive and powerful computing
devices has resulted in the common scenario where one user
has sole access to a set of resources. Unfortunately, there
exists a significant impedance mismatch between user-based
access control and the primary security threat in the single-
user scenario, where users inadvertently execute malicious
programs that operate with that user’s privilege and have full
access to all of the user’s sensitive computing resources. As
such, user-based access control is not well-suited to preventing
attacks against user confidentiality. In particular, malicious
programs can access privacy-sensitive hardware devices such
as the microphone or camera, or access virtual resources such
as the system clipboard and display contents of other programs.

In response to the changing computing landscape, much
effort has been invested in extending the user-based access
control model to enable dynamic, user-driven security. For

instance, modern operating systems for smartphone and tablet
devices have taken the opportunity provided by these new
platforms to introduce permission systems as an extension
to the underlying UNIX security model that remains in use
on these systems. For instance, iOS gives users the ability to
approve or deny access to sensitive resources during runtime
via popup prompts. Research operating systems have also
proven a fertile milieu for experimenting with security models
that address the needs of modern computing systems. For
instance, Roesner et al. [27] present an extension to ServiceOS
where gadgets are embedded into applications that allow users
to grant or deny access to sensitive resources.

In each of the preceding examples, determining legitimate
user intent and translating that intent into appropriate security
policies is a central feature of their respective security models.
For each system, security decisions as to whether to allow
or deny access to sensitive resources for individual programs
are delegated to the user, and the system is responsible for
establishing trusted input and output paths to capture user
intent such that malicious programs cannot influence this
process by either spoofing or intercepting user inputs.

We fundamentally agree with this approach to securing
modern computing devices, since users are often solely capable
of classifying program actions as privacy violations or other
inappropriate uses of their resources. However, one drawback
of these efforts is that applications and operating systems must
be written with this security model in mind. This requirement
largely excludes traditional operating systems such as Win-
dows, Linux, and OS X, which remain in wide use, from
enjoying the benefits of user-driven access control. In this
work, we show that providing a user-driven security model
for protecting privacy-sensitive computing resources can be
realized for traditional operating systems, as an extension to
the traditional user-based security model. In particular, our
security model is based on the observation that a legitimate
application usually accesses privacy-sensitive devices imme-
diately after the user interacts with that application (e.g., by
clicking on a button to turn on the camera, or pressing the
key combination for a copy & paste operation). We call this
security model input-driven access control, and demonstrate
how it can be enforced by correlating user input events with
security-sensitive operations based on their temporal proximity,
making access control policy decisions automatically based on
this information, and notifying the user of resource accesses in
an unintrusive manner. We achieve this by using lightweight
and generic techniques to augment the operating system and
display manager with trusted input and output paths, which we
collectively call OVERHAUL, and demonstrate our approach by
implementing a prototype for Linux and X Window System.



In contrast to prior work, we show that capturing user
interaction as a basis for security decisions involving sensitive
resources can be performed in an application-transparent man-
ner, obviating the requirement that applications be rewritten to
conform to special APIs or with a more refined security model
in mind. Using our approach, we demonstrate how dynamic
access control can be transparently achieved for common re-
sources such as the microphone, camera, clipboard, and display
contents. Finally, we show that this can be achieved without a
discernible performance impact, and without utilizing intrusive
prompts or other changes to the way users interact with
traditional operating systems. To summarize, we make the
following contributions.

• We present a general architecture for retrofitting a dy-
namic, input-driven access control model into traditional
operating systems in a transparent manner, in which
access to privacy-sensitive resources is mediated based
on the temporal proximity of user interactions to access
requests. We also address the challenges of tracking user
interaction across process boundaries (e.g., IPC channels).

• We build upon this architecture to demonstrate how input-
driven access control can be implemented to protect sensi-
tive resources such as the microphone, camera, clipboard,
and display contents.

• We present a prototype implementation for Linux and
X Window System, and evaluate it to show that our
system imposes no discernible performance overhead and
no changes to the traditional computing interface.

II. PROBLEM STATEMENT

Security models for traditional operating systems center on
multiplexed computation on timesharing systems, where mul-
tiple users share access to a single set of computing resources.
However, the shift towards dedicated devices with single users
has resulted in a fundamental impedance mismatch between
the traditional model of users, groups, and processes and the
needs of modern systems. In particular, contemporary threats
often take the form of malicious programs that execute with the
full privileges of the user, rendering user-based security models
largely ineffective. Mobile operating systems such as iOS and
Android, as well as research systems such as ServiceOS [27],
have promoted the concept of dynamic access control where
permissions to access sensitive resources are granted by users
on-demand. However, operating systems for the desktop and
server have been largely neglected by these advances, since
prior work has required that applications be designed with
dynamic access control in mind.

An open question remains as to whether modern dynamic
access control can be realized for platforms where applications
have not been written to conform to this model. We believe
that our work answers this question in the affirmative.

Threat model. For this work, we assume that the trusted
computing base includes the display manager, OS kernel, and
underlying software and hardware stack. Therefore, we assume
that these components of the system are free of malicious code,
and that normal user-based access control prevents attackers
from running malicious code with superuser privileges. On the
other hand, we assume that the user can install and execute
programs from arbitrary untrusted sources, and therefore, that

malicious code can execute with the privileges of the user. We
assume that complementary preventive security mechanisms
are in place to prevent privilege escalation attacks, such as
ASLR or DEP.

Input-driven access control primarily addresses two privacy
breach scenarios. The first one covers programs that stealthily
run in the background and access privacy-sensitive resources
without the user’s knowledge, behavior typical of malware [2],
[3], [18], [7]. OVERHAUL ensures that such attempts are
automatically blocked.

The second scenario involves benign, but buggy or mis-
behaving, applications that access protected resources without
the user’s knowledge. Due to the trade-offs OVERHAUL make
in order to transparently retrofit a dynamic access control into
existing systems, unlike previous work [27], it is not possible
to match each input event to a precise user intent. Therefore,
in this scenario, OVERHAUL instead visually notifies the user
to alert her of the undesired resource access.

We note that all forms of user-driven security are funda-
mentally vulnerable to full mimicry attacks. For instance, if a
user could be tricked into knowingly installing, executing, and
granting privileges to a malicious application that imitates a
well-known legitimate application, user-driven security models
would fail to provide any protection. Hence, our threat model
does not include this third scenario.

Goals. The primary security goals OVERHAUL aims to
achieve are the following.

(S1) OVERHAUL must allow an application to access privacy-
sensitive resources only if the user has explicitly inter-
acted with that application through physical, hardware
input devices, immediately before the access request.
Resources include hardware devices such as cameras,
microphones, and other sensors, or virtual resources such
as system clipboards and the display contents of user
programs.

(S2) OVERHAUL must prevent programs from forging input
events or mimicking user interaction to escalate their (or
other applications’) privileges.

(S3) OVERHAUL must ensure that legitimate user interaction
events cannot be hijacked by malicious applications, such
that users should not mistakenly grant permissions to a
malicious program that were intended for a legitimate
program.

(S4) OVERHAUL must notify users of successful accesses to
protected resources via a trusted output path that cannot
be obscured or interfered with by other applications.

In addition to the above security properties, we set out to
satisfy a number of design goals for OVERHAUL.

(D1) OVERHAUL must provide transparent protection to exist-
ing applications, without requiring access to source code
or application modifications.

(D2) OVERHAUL should not incur a significant performance
overhead.

(D3) OVERHAUL should not significantly degrade the us-
ability of, or change the way users interface with the
underlying system, for instance, by using intrusive popup
prompts.



III. SYSTEM DESIGN

The architecture of an OVERHAUL-enhanced system re-
quires modifications to, and close interaction between, several
components of the operating system and display manager. In
this section, we describe the abstract design of OVERHAUL,
independent of the underlying operating system, and present
the challenges involved in monitoring and tracking user input
across process boundaries. Later, in Section IV, we will
demonstrate how our design can be realized in a prototype
running on Linux and the X Window Server.

Note that our work assumes a userspace display manager
(i.e., a design similar to that of the X Window System), an
approach employed by popular commodity operating systems.
Different OS designs can allow display managers integrated
into the kernel, which would alleviate the need for some
of the components we describe below, such as a separate
trusted communication channel between the kernel and the
display manager. Our design can be applied to that case in
a straightforward manner.

A. Trusted Input & Output Paths

In order to realize any of the aforementioned security guar-
antees, OVERHAUL must establish a trusted path for user input.
By a trusted path, we refer to the property that input events
should be authenticated as legitimately issued by a real user
with a hardware input device, as opposed to synthetic input
events that can be issued programmatically. This capability
serves as a generally useful primitive that could be exposed to
higher layers of the software stack. However, in this work we
focus on illustrating its use for transparently securing access
to system-wide resources.

The display manager of the system is often responsible for
receiving all low-level input events, including mouse clicks
and key presses, from device drivers and delivering them to
their target application windows. Consequently, OVERHAUL
utilizes a display manager with an enhanced input dispatching
mechanism that can detect and filter out synthetically generated
inputs to fulfill the trusted input path requirement.

Likewise, OVERHAUL is tasked with establishing a trusted
output path to alert users whenever a sensitive resource access
request is granted. We achieve this through visual notifications
that appear on the screen. Since the display manager is in
control of the screen contents, OVERHAUL extends it with an
overlay notification mechanism that is always stacked on top
of the screen contents, and cannot be obscured, interrupted, or
interfered with by other processes.

B. Permission Adjustments

The kernel is responsible for dynamically adjusting the
privilege level of user programs in response to permission
granting actions, i.e., authentic user input events. In order
to accomplish this task, the kernel first needs to establish
a secure communication channel to the display manager.
The display manager can then use this channel to send the
kernel interaction notifications each time the user interacts
with an application. Since the display manager is often a
regular userspace process, the kernel is able to authenticate the
communication endpoint and ignore communication attempts
by other processes in a straightforward manner.

The kernel keeps a history of these interaction notifications,
which include the identity of the application that received
the interaction and a timestamp, inside a permission moni-
tor. Once this information is stored, the permission monitor
can respond to permission queries and adjustment requests,
originating either from the userspace display manager through
the already established secure communication channel, or from
within the kernel, any time a permission decision is to be
made. This decision process involves comparing a timestamp
issued together with the query with the stored interaction
timestamp corresponding to the target application, and in this
way correlating privileged operations with input events based
on their temporal proximity.

Finally, the kernel also uses the secure communication
channel to request from the display manager that it display
a visual alert when a resource access is granted.

C. Sensitive Resource Protection

An important class of system resources that OVERHAUL
aims to protect is sensitive hardware devices. These devices
could include arbitrary sensors attached to the system; typical
examples on desktop operating systems include the camera
and microphone. In order to implement dynamic access control
over hardware resources, the kernel is responsible for mediat-
ing accesses to these sensitive hardware devices.

However, note that the kernel does not interpose on all
security-sensitive resources. Representative examples include
the system clipboard and program display contents, both
controlled by the display manager. Applying dynamic access
control over these resources requires the display manager to
query the kernel permission monitor, and grant or deny the
action based on the response.

To illustrate the enhancements required to the kernel and
the display manager, and how sensitive resources are protected,
we present two scenarios that build upon the components
described above. For the following, we let:

opt be a privileged operation at time t,
where op ∈ {copy,paste, scr,mic, cam},

EA,t be an input event sent to application A at time t,
NA,t be an interaction notification corresponding to EA,t

QA,t be a permission query for application A at time t,
RA,t be a response ∈ {grant,deny} for QA,t,

VA,op be a visual alert request, indicating A performs op.

Hardware resources. Figure 1 presents an example
interaction involving an application’s request to access the
system microphone. In an unmodified system, the request
would succeed so long as application A holds the permission
to access the microphone device at t+ n.

OVERHAUL introduces the following changes. First, the
system ensures that for all applications the permission to access
the microphone is denied by default. (1) When the user clicks
on a button in application A to turn on the microphone at
time t, the display manager receives the input event EA,t and
verifies that it is generated by a hardware input device through
user interaction. (2) If EA,t is authentic, then the display man-
ager first sends the kernel permission monitor an interaction



Display
Manager

Permission Monitor

A

EA,t

NA,t

EA,t
1

2

3

Kernel

Userspace

Cam Mic

4

5

mict+n

Hardware

VA,mic

6

Figure 1. Dynamic access control over privacy-sensitive hardware devices.

notification NA,t through the secure communication channel.
The permission monitor records this notification, indicating
that A received authentic user input at t. (3) The display
manager then forwards EA,t to its destination A. (4) Upon
receiving the event, A attempts to turn on the microphone. The
permission monitor intercepts A’s request mict+n to access
the device. It compares A’s latest interaction time t with the
device access request time t+n to correlate the input event with
the privileged operation, based on a preconfigured threshold δ.
(5) Access to the device is granted to A only if the privileged
operation could successfully be correlated with a preceding
input event (i.e., if (t + n) − t = n < δ holds). (6) Finally,
the kernel sends VA,mic to the display manager to request that
the user be alerted. This step is necessary because the display
manager may not have adequate information to identify the
process that actually accessed the resource (e.g., due to IPC
mechanisms, as explained in Section III-D).

The verification of user input authenticity provides the
property that sensitive device access operations can only be
performed in response to legitimate user input. Note that, in
this scenario, no permission query from the display manager to
the permission monitor is necessary. Since the kernel has full
mediation over hardware resources, the permission monitor can
implicitly adjust the permissions of A when necessary. This
entire process is transparent to the application.

Display resources. Figure 2 shows an example interaction
for a clipboard paste operation between the display manager
and an application A. The baseline protocol consists of A
requesting the clipboard contents from the display manager,
and receiving back the copied data. OVERHAUL revokes all
clipboard access permissions by default, and modifies the
protocol in the following way.

(1) First the user inputs the keystrokes to paste some
text, (2) the display manager verifies that the input EA,t is
authentic and notifies the kernel permission monitor with NA,t,
(3) and forwards the key event to A. (4) After receiving the
command from the user, A issues a clipboard paste request
pastet+n to the display manager. (5) Instead of immediately
serving the request, the display manager sends a permission

Display
Manager

Permission Monitor

A

EA,t

NA,t QA,t+n

RA,t+n

EA,t

pastet+n

data

1

2

3

7

6

4

5

Kernel

Userspace

Figure 2. Protecting copy & paste operations against clipboard sniffing.

query QA,t+n to the kernel permission monitor through the
secure communication channel. (6) As before, the permission
monitor compares the interaction time t in its records for
A with the privileged operation request time t + n issued
together with the query. If the correlation of the input event
with the operation request is successful based on the temporal
proximity threshold δ, (i.e. n < δ), the permission monitor
replies with a grant response RA,t+n; otherwise RA,t+n is
a deny response. (7) If and only if RA,t+n is a permission
grant does the display manager return to A the data; or else
A is blocked from accessing the clipboard. In this scenario an
explicit visual alert request from the kernel is not necessary,
because the display manager can successfully identify the
requesting process without kernel assistance.

Here, the secure communication channel between the
kernel and the display manager is used both for sending
interaction notifications to the permission monitor, and for
querying it whether to allow the privileged operation.

As before, the verification of user input authenticity pro-
vides the property that copy & paste operations can only
be performed in response to actual inputs. This provides
protection against malicious programs that attempt to capture
sensitive data from the system clipboard, such as passwords
pasted from a password manager. We note that because per-
mission queries are implicitly generated along with the copy &
paste requests, this protection is transparent to the application.

Note that, in this scenario, first sending input notifications
to the permission monitor and later querying it for the same
information could seem unnecessary. Instead, one could store
input notifications inside the display manager to avoid kernel
communication. However, in the next section, we show that our
design is necessary for the kernel to track interactions across
process boundaries, through process spawns and IPC channels.

D. Interaction Across Process Boundaries

Real-life applications often consist of multiple processes or
threads, and communicate with each other using application-
specific protocols via inter-process communication (IPC) fa-
cilities provided by the OS. This significantly complicates
the task of associating user input with privileged operations
requested by an application, because the process receiving
the input event could be different from the actual process



Display
Manager

Permission Monitor

Shot

ERun,t

NRun,t

ERun,t
1

2

3

Kernel

Userspace

Run

4

QShot,t+n

RShot,t+n

76

scrt+n

img
8

5

create 
process

Figure 3. A program launcher executing a screen capture program, illustrating
the need for interposing on process spawn mechanisms to propagate interaction
information.

that accesses a sensitive resource. We illustrate this challenge
OVERHAUL needs to address with the examples below.

Figure 3 presents a scenario where an application Shot
attempts to capture a screen image. Since the screen content is
also a resource controlled by the display manager, this example
is similar to the previous copy & paste example. However,
here, the user first executes a program launcher Run, types in
the name of the program Shot, and the application launcher
executes Shot on the user’s behalf. In other words, (1–3) the
user actually interacts with Run, which the kernel permission
monitor records; (4) but Run creates a new process Shot, (5)
and the screen capture request scrt+n is made by this different
process for which there exists no interaction record.

In another scenario, Figure 4 depicts how a multi-process
Internet browser that uses separate processes for each browser
tab (i.e., similar to Chromium) would run a web-based video
conferencing application. (1–3) When the user commands the
browser to launch a video conference session, she actually
interacts with the main browser window Browser, and the
permission monitor is notified of this. However, Browser
opens the web application in a separate process Tab and (4)
commands it to turn on the camera via shared memory IPC.
As a result, (5) Tab requests camt+n without a corresponding
interaction record in the permission monitor.

The ubiquity of multi-process application architectures, ap-
plications that launch third-party programs, and IPC use make
it necessary for OVERHAUL to correctly handle cases similar
to those exemplified above. Therefore, our design requires
OVERHAUL to interpose on all process and thread spawns, as
well as the entire range of IPC mechanisms provided by the OS
(e.g., (4) in Figure 3 and Figure 4). Specifically, OVERHAUL
needs to propagate interaction notifications between processes
according to the following policy:

(P1) Interaction notifications of a parent process must be prop-
agated to a newly spawned child process; i.e., whenever
a process X creates a new process Y , all interaction
notifications NX,t recorded in the permission monitor
must be duplicated as NY,t.

(P2) In an IPC channel established between two (or more)
processes, interaction notifications of a message sender
process must be propagated to the receiver process; i.e.,

Display
Manager

Permission Monitor

Tab

EBrowser,t

NBrowser,t

EBrowser,t
1

2

3

Kernel

Userspace

Cam Mic

5

6

camt+n

Hardware

Browser

4

open cam

Shared
Memory

Figure 4. A multi-process browser, components of which communicate via
shared memory IPC. This example illustrates the need for interposing on IPC
endpoints to propagate interaction information.

OVERHAUL must monitor all established IPC endpoints,
and whenever process X sends a message to process Y ,
interaction notifications NX,t recorded in the permission
monitor must be duplicated as NY,t.

In this way, OVERHAUL can support process spawns and
IPC chains of arbitrary length and complexity, and remain
transparent to the applications and oblivious to the application-
level communication protocols.

E. Limitations

OVERHAUL inherently shares the limitations of other user-
driven security approaches. In particular, because the user’s
perception of malice and their interaction with applications
are central to this security model, OVERHAUL cannot provide
protection against malware that can trick users into voluntarily
installing and using it, for example, by mimicking the appear-
ance and functionality of well-known legitimate applications.
Additionally, OVERHAUL does not support running scheduled
tasks, or persistent non-interactive programs that need access
to the protected sensitive devices (e.g., a cron job or daemon
that periodically takes screen captures). We stress that these
issues are fundamental to any user-driven access control model,
and despite its limitations OVERHAUL provides important
security benefits complementing the standard access control
models employed in commodity operating systems, without
any significant detriments to performance or user experience.

The trade-offs OVERHAUL makes between backwards com-
patibility with legacy programs and defending against on-
system malware results in a system that provides strictly
weaker security guarantees than prior work on user-driven
access control [27], where a stronger connection between user
intent and program behavior can be achieved. This primarily
stems from the design decision to treat existing applications in
a black-box fashion. Nevertheless, we believe that OVERHAUL
significantly raises the bar for attacks, bringing much of the
security of user-driven access control to existing platforms in
a transparent manner.



IV. IMPLEMENTATION

In this section, we focus on the implementation details of
how we guarantee the properties required of each component
of OVERHAUL. Though our design is sufficiently general to
apply to OSes that implement a traditional access control
model, we built our prototype for the Linux kernel and X.Org
implementation of the X Window System.

A. Enhancements to X Window System

The X Window System is responsible for enforcing several
security properties outlined in Sections II & III. In particular,
it must guarantee that a trusted path exists for authentic user
input, a trusted output for visual notifications, and interpose
on all accesses to the display contents and system clipboard.

Trusted input. The underlying assumption behind our pro-
totype implementation of a trusted input path for the X Win-
dow System is that user inputs that originate from hardware
attached to the system should be considered authentic, while
software-generated events should be untrusted. While there are
legitimate use cases for allowing programmatic generation of
input events (e.g., GUI testing tools) such avenues are also
required for malware to interact with a user interface on the
user’s behalf so long as the hardware is considered to be free
of embedded malicious functionality.

As a result, OVERHAUL focuses on distinguishing between
hardware and software-generated input events. We identified
two facilities provided by X11 for generating and injecting
synthetic events to the event queue: the SendEvent [30] and
XTestFakeInput [15] requests. SendEvent is a core X11
protocol request that allows a client to send events to other
clients connected to an X server. In particular, this interface
could allow malware to inject keystrokes or mouse events on
other windows. However, events sent using this interface must
have a flag set that indicates that the event is synthetic. As such,
filtering such input events within the X server is a matter of
checking for the presence of this flag.

The second request, XTestFakeInput, is part of the XTest
extension, which is used to provide a GUI testing framework.
In this case, it is not possible to implement a flag check since
no indicator flag is used with XTest requests. Therefore, it
was necessary to modify the X server to tag events with the
extension or driver that generated the event. While this is more
onerous than checking for the existence of a flag, it is also a
method for determining the provenance of input events that
generalizes to future modifications to the X Window System.

With the ability to distinguish hardware-generated input
from synthetic input, the X server was modified to connect
to a secure communication channel upon initialization (as we
will explain in Section IV-B), and send interaction notifications
to the kernel permission monitor every time the user interacts
with an X client. These notifications are labeled with the PID
of the process that received the event and a timestamp. The PID
serves as an unforgeable binding between a window belonging
to a process and events, as the mapping between X client
sockets and the PID is retrieved from the kernel.

We note that the trusted input path described so far re-
mains vulnerable to clickjacking attacks [20]. For instance,
a malicious X client may place transparent overlays on the

Figure 5. Sample visual alerts shown by OVERHAUL. The cat image is used
as the visual shared secret to indicate that the alert is authentic.

screen, or periodically display a previously invisible window
over other applications in an attempt to trick users into clicking
on them and stealing authentic input events. To prevent this,
OVERHAUL only generates interaction notifications if the X
client receiving the event has a valid mapped window that has
stayed visible above a predefined time threshold.

Trusted output. As described before, the trusted output
path that OVERHAUL utilizes is a visual alert shown on
the screen whenever a sensitive resource is accessed. Since
the X Window System controls the entire display contents,
OVERHAUL ensures that the displayed alert is rendered on top
of all other windows, and cannot be blocked, obscured, or
manipulated by other X clients. We have designed the alert
messages to be displayed for a few seconds at the top of the
screen at a reasonably large size to be easily noticeable. Since
resource accesses can only be granted immediately following
user input, the user is highly likely to be present and interacting
with the computer, making it difficult for her to miss an alert.
In addition, the alerts make use of a visual shared secret set by
the user of the system to prevent malicious applications from
forging fake alerts. Two example alerts are shown in Figure 5.

Note that, compared to popup prompts that require explicit
policy decisions from the user during runtime (e.g., Windows
User Account Control, or iOS permission dialogues), alerting
the users with visual notifications inherently establishes a
looser association between user actions and the application
behavior. Indeed, we have implemented and verified that
OVERHAUL’s security primitives can be used to support such
a security model in a trivial manner, where the trusted output
path would be used for displaying an unforgeable prompt, and
the trusted input path to verify user interaction with it. How-
ever, it has been shown that popup prompts have severe usabil-
ity issues that conflict with their security properties, and that
they are often ignored by users, or disabled completely [24].
Therefore, we believe the non-intrusive, transparent approach
we have taken with OVERHAUL is a worthwhile trade-off
between security and usability, and would be a more effective
security solution in a real-life setting. We do not explore the
popup prompt approach further in this paper.

Display contents. The X Window System allows any client
program to access the contents of the root window (i.e., the
entire screen), or any specific window through the GetImage
core protocol request [30], or the XShmGetImage request
provided by the MIT shared memory extension [11]. These



App A

Copy 
Source

App B

Paste 
Target

X
Server

SetSelection

GetSelection

ConvertSelection

SelectionRequest

ChangeProperty

SendEvent

SelectionNotify

GetProperty

data

DeleteProperty

CopyA PasteB

Owner is A

data

1

2

10

4

5

6

7

8

9

3

11

12

13

Figure 6. Protocol diagram for the X11 copy & paste operation. Modified
steps are highlighted in bold.

interfaces can be used to retrieve the displayed contents for any
purpose, such as taking screenshots, or recording the desktop.

In order to mediate accesses to the display contents of
X clients, our modified X server intercepts these events,
and queries the kernel permission monitor via the secure
communication channel with a message containing the PID
of the requesting process and a timestamp. Based on the
response, access is either granted, or the screen capture request
is dropped. This way, OVERHAUL can enforce that display
contents can only be accessed in response to user input.

The X Window System also provides two additional core
protocol requests, CopyArea and CopyPlane, which are used
for copying a representation of display contents between two
buffer areas. These requests could be used as an alterna-
tive approach to capture the screen contents, and therefore,
OVERHAUL must also interpose on them. However, unlike
the previous GetImage, these requests are not specifically
designed for capturing display contents, and they are regularly
used by X clients for various other purposes. Therefore, in
this case, OVERHAUL first needs to inspect the owners of the
source and destination buffers specified in the copy request. If
the owners of both buffers are identical, in other words, a client
is copying a portion of its own window, the request is allowed
to proceed. However, if a client is requesting the display
contents owned by a different client (or the root window),
OVERHAUL applies its user input-based access control as
before, and allows or blocks the request accordingly.

Clipboard. The X Window System does not provide a
central clipboard space, but instead defines the copy & paste
operations as an inter-client communication protocol [28]
outlined in Figure 6. The steps to copy data from a source
client to a target client are as follows.

(1) A copy operation is initiated by user input received via
an X input driver. (2) The source client asserts ownership of
a selection object by issuing to the X server a SetSelection
request. In (3) and (4) the source client confirms with the
X server that it has successfully acquired the selection. This
concludes the copy operation; note that no data has actually
been copied at this stage.

(5) The paste event is initiated by user input. (6) The
target client sends a ConvertSelection request to the X
server, (7) which, in turn, issues a Selection Request to
the selection owner (i.e., the source client) to notify it of
the request for the copied data. (8) The source client sends
the data to the X server to be stored as a property using
a ChangeProperty request, (9) and then requests from the
server that the target client be sent a Selection Notify
event, using a SendEvent request. (10) The paste target is
notified that the copied data is available. (11) The target client
responds with a GetProperty request, (12) retrieves the data,
(13) and finally, removes it from the server.

In Figure 6, the protocol steps that were modified in
OVERHAUL are highlighted in bold. In particular, steps (1)
and (5) are events that are verified as authentic user input
from a hardware input device. The X server notifies the kernel
permission monitor of these events as previously described.
In steps (2) and (6), before serving the SetSelection or
ConvertSelection requests received from the clients, the
X server first queries the kernel permission monitor via the
secure communication channel to confirm that the copy or
paste request is preceded by corresponding user interaction.
The operation is allowed to proceed only if the permission
monitor responds with a permission grant message; otherwise,
the client is sent back a bad access error.

Note that, this copy & paste protocol is followed merely by
convention, and the given interaction sequence is not enforced
by the X server. As a result, a malicious X client may attempt
to skip certain steps of the protocol to bypass OVERHAUL’s
checks. One possible attack vector is the SendEvent request
which allows an X client to command the X server to send an
X11 event on behalf of the client. By exploiting this mecha-
nism, a malicious client can directly send SelectionRequest
events to other clients and receive the copied data from the
selection owner. To prevent such attacks, our implementation
also interposes on the SendEvent requests, and blocks the
sending of events that can break the copy & paste protocol.
Other examples of possible attacks include subscribing to
events generated by the X server when properties are created
and updated to retrieve the pasted data stored in them before
the actual paste target could remove it. OVERHAUL ensures
that such events are only delivered to the paste target while
the clipboard data is in flight. Due to space restrictions, we
omit details of these low-level implementation details.

B. Enhancements to the Linux Kernel

As shown in Section III, our implementation augments
the Linux kernel with a permission monitor that establishes a
secure communication link to the X Window System, mediates
sensitive hardware accesses, adjusts per-application privileges
in response to interaction notifications, and responds to permis-
sion queries from the X server for access to display resources.

Secure communication channel. The first property that
our kernel must support is establishing and authenticating the
communication channel to the X Server. In our prototype, we
used the Linux netlink facility to provide this channel [29].
Netlink was originally designed to exchange networking in-
formation between the kernel and userspace, but it serves as a
robust general communication channel across this boundary.



Netlink, however, does not solve the authentication prob-
lem. That is, the kernel and X server must ensure that no
malicious program is interposing on the channel. While using
a standard mutual authentication protocol is possible, our
prototype instead relies on the fact that the kernel operates
in supervisor mode and can introspect on the userspace X
process. Once the kernel establishes the netlink channel and
receives a connection request from X during server initializa-
tion, it examines the virtual memory maps to check whether
the process it is communicating with is indeed the X server.
In particular, it checks whether the executable code mapped
into the process is loaded from the well-known, and superuser-
owned, filesystem path for the X binaries. If so, it considers
the remote party to be authenticated as the legitimate X server
and, due to the kernel’s supervisor privileges, the X server
trusts that the kernel will perform this procedure correctly.

Device mediation. OVERHAUL must interpose on all ac-
cesses to sensitive hardware devices. To this end, it suffices on
Linux to monitor open system call invocations on device nodes
exposed in the filesystem. Therefore, our prototype implements
an augmented open system call that, in addition to normal
UNIX access control checks, looks up the interaction notifica-
tion records received from the X server for the running process
to allow or deny access to the device accordingly. Note that
it is usually considered better practice to implement kernel-
side security checks using the Linux Security Modules (LSM)
framework [32], instead of modifying system calls directly.
However, as of this writing, LSM does not officially support
stacking multiple security modules. Since OVERHAUL is not a
replacement for other security modules, we implemented our
prototype in this way as a conscious design choice.

An important implementation detail of our prototype deals
with accurately mapping sensitive devices to their filesystem
paths. In particular, modern Linux distributions often make
use of dynamic device name assignments at runtime using
frameworks such as udev. Therefore, our prototype relies on
a trusted helper application, owned by the superuser and
protected against unauthorized modification using normal user-
based access control, to manage this mapping. It is invoked
in response to changes in the device filesystem, mounted by
convention at /dev, and propagates these changes to the kernel
via an authenticated netlink channel.

Process permission management. The kernel permission
monitor receives interaction notifications from the X server,
which includes a PID and a timestamp, and needs to record
this information in an easily accessible context associated with
each process. Our prototype stores this information inside the
task_struct, which is the data structure Linux uses to rep-
resent a process. Every task_struct is implicitly associated
with a unique process; therefore, this procedure only requires
us to locate the structure corresponding to the PID reported
inside the interaction notification, and save the interaction
timestamp inside a new field.

To perform a permission check, the permission monitor
first receives the PID of the process that requests access to the
sensitive resource, either internally from the device mediation
layer, or from the X server via the netlink channel. Next, it re-
trieves the correct task_struct and compares the timestamp
recorded there (i.e., the most recent user interaction time) with
the privileged operation’s timestamp. If the temporal proximity

of the two is above a configurable threshold, permission is
granted (or a positive response is sent back to the X server).
We empirically determined that setting a threshold of less than
1 second could lead to falsely revoked permissions, but 2
seconds is sufficient to prevent incorrectly denying access to
legitimate processes. In our long-term experiments with this
configuration, described in Section V-D, we did not encounter
any broken functionality or unusual program behavior.

Process creation and IPC. As previously explained,
OVERHAUL must be able to track interaction information
across process boundaries for any meaningful real-life use. In
Linux, a new process (i.e., the child) is created by duplicating
an existing process (i.e., the parent), using the fork or clone
system calls. This operation duplicates the task_struct of
the parent to be used for the child process, which includes
the interaction timestamp stored in the same data structure.
In other words, our implementation ensures that the parent’s
interaction information is passed down to a newly created child
automatically, without additional modification to the kernel.
This property also extends to the threads of a process, because
Linux does not have a strict distinction between processes and
threads and uses a separate task_struct for each.

In contrast, tracking interaction information across IPC
channels requires further modifications to the kernel, for each
IPC facility provided by the OS. Our implementation supports
all of POSIX shared memory and message queues, UNIX SysV
shared memory and message queues, FIFOs, anonymous pipes,
and UNIX domain sockets. Higher-level IPC mechanisms
that are built on these OS primitives (e.g., D-Bus) are also
automatically covered. These IPC mechanisms are modified in
a similar manner to propagate interaction information between
the two endpoint processes, which works as follows.

(1) When an IPC channel is first established, we embed
inside the kernel data structures that correspond to the IPC
resource an expired interaction timestamp. (2) When a process
wants to send data through an IPC link, it first embeds inside
the IPC resource its own interaction timestamp, unless the
structure already contains a more recent timestamp. (3) When
the receiving process reads the data from the channel, it
compares its own interaction timestamp with that is embedded
inside the IPC resource. If the IPC channel has a more up-to-
date timestamp, the process saves it in its task_struct.

Implementation of this protocol requires adding a times-
tamp field inside the IPC data structures, and inserting checks
inside the corresponding send and receive functions for each
IPC facility. However, a notable exception is POSIX and
SysV shared memory, which must be handled differently.
Specifically, once the kernel allocates and maps a shared
memory region with the mmap system call, writes and reads
to these regions are regular memory operations that cannot
be intercepted above the hardware level. We overcome this
obstacle by taking a different approach. We interpose on virtual
memory mapping operations inside the kernel, check whether
the mapped area is flagged as shared (indicated by a flag
inside the corresponding vm_area_struct), and if so, revoke
read and write permissions for that memory area. This causes
subsequent accesses to that memory region to generate access
violations, which allows OVERHAUL to capture the IPC at-
tempt inside the page fault handler. We then run the interaction
propagation protocol described above, and temporarily restore



the memory access permissions to their original values to allow
the memory operation to succeed on the next try. Clearly,
repeating this process for every memory access could lead
to severe performance overhead; therefore, after every access
violation, we put the corresponding vm_area_struct on a
wait list before its permissions are revoked once again. This
allows memory accesses that immediately follow the first page
fault to proceed uninterrupted. This wait duration must be
sufficiently shorter than the 2 second interaction expiration
time, since we would miss shared memory IPC attempts and
fail to propagate interaction timestamps during this period.
We configured this duration to 500 ms, which yielded a good
performance-usability trade-off as shown in Section V.

CLI interactions. A final implementation requirement
arises from the fact that Linux systems often make extensive
use of the command line interface. On graphical desktops, this
is achieved by running a terminal emulator (e.g., xterm) which
communicates with a command line shell (e.g., bash) via a pair
of pseudo terminal devices. If the user was to type in the name
of a command line application inside a terminal emulator (as
opposed to using a graphical application launcher), the termi-
nal emulator would receive the input events, and communicate
the command to launch to the shell via the pseudo terminal
devices. Any subsequent device access requests would be made
by a program launched by the shell process, which has not
received any direct interaction (In fact, the shell usually is not
even an X client and, thus, cannot receive X11 input events).

To enable command line tools that access the protected
sensitive devices to function correctly under OVERHAUL, we
implemented an interaction timestamp propagation protocol
analogous to the one described for IPC channels above. Here,
the modifications are made inside the pseudo terminal device
driver. Whenever a process writes to a terminal endpoint,
that process embeds its timestamp into the kernel data struc-
ture representing the pseudo terminal device. Subsequently,
when another process reads from the corresponding terminal
endpoint, that process copies the embedded timestamp to its
task_struct, unless it already has a more recent timestamp.

Processes isolation and introspection. OVERHAUL does
not require sandboxing of individual user applications, or any
advanced process isolation mechanism beyond the kernel and
process memory isolation that commodity operating systems
provide. In particular, all interaction notifications in our design
are managed by the OS; they are never exposed to userspace
applications. This prevents malicious applications from tam-
pering with legitimate interaction notifications to mount denial-
of-service attacks, or hijacking interaction notifications of
other processes. Similarly, since each interaction notification is
bound to a specific process, malicious applications that run in
the background and receive no user interaction cannot hijack
the permissions granted to another application.

However, process introspection and debugging facilities
offered by OSes need attention, because they might make it
possible to inject malicious code into legitimate applications
that are expected to have access to sensitive resources. In
Linux, this threat is somewhat contained since the Linux
debugging facilities, such as ptrace and /dev/{PID}/mem
(also using ptrace internally), do not allow attaching to
processes that are not direct descendants of the debugging
process. In other words, even if two unrelated processes run

Table I. PERFORMANCE OVERHEAD OF OVERHAUL.

Benchmarks Baseline OVERHAUL Overhead

Device Access 45.20 s 46.18 s 2.17 %
Clipboard 116.48 s 119.93 s 2.96 %
Screen Capture 68.26 s 69.86 s 2.34 %
Shared Memory 234.86 s 236.33 s 0.63 %
Bonnie++ 47319 files/s 47265 files/s 0.11 %

with identical (but non-super user) credentials, they cannot ma-
nipulate each other’s state. In our implementation, we provide
even stricter security by temporarily disabling all permissions
for a debugged process, with a trivial patch to the ptrace
system call. This also prevents parent processes from tracing
their own children, which, in turn, subverts attacks where a
malicious program could launch another legitimate executable,
and then inject code into it. OVERHAUL enables this protection
by default, but it could be toggled by the super user through a
proc filesystem node to facilitate legitimate debugging tasks.

V. EVALUATION

A. Performance Measurements

Since OVERHAUL is an input-driven system that only im-
pacts the operations performed on privacy-sensitive resources,
we expect its performance overhead to be overshadowed by
human-reaction times and I/O processing delays. Indeed, in
our experiments with the prototype implementation, we did not
observe a discernible performance drop compared to normal
system operation. Consequently, in order to obtain measurable
performance indicators to characterize the overhead of OVER-
HAUL, we created micro-benchmarks that exercise the critical
performance paths of our system. We also used a standard
filesystem benchmarking utility to measure the impact of our
modified open system call on regular filesystem operations.
We explain each of these benchmarks in more detail below.

Device access. In this benchmark, we measured the time
to open the filesystem device node corresponding to the
microphone installed on our testing system 10 million times.

Clipboard operations. We designed this benchmark to
measure the runtime for performing 100,000 clipboard opera-
tions. Since in the X Window System a paste is significantly
more costly than a copy, we configured our benchmark to only
perform pastes for this test, and report the worst-case results.

Screen capture. This benchmark takes 1,000 screen cap-
tures using the imlib2 library and measures the total runtime.
The time to save the image files to disk is not included.

Shared memory IPC. Although OVERHAUL interposes
on every IPC mechanism, our preliminary measurements in-
dicated that the shared memory communication incurred the
highest overhead due to the necessity for intercepting page
faults, changing virtual memory access permissions, and in-
validating page tables. Consequently, to measure the worst-
case performance impact, in this benchmark we measured the
runtime for performing 10 billion write operations on a shared
memory area. We repeated this benchmark with different
shared memory sizes (i.e., from 1 to 10,000 pages, with a
page size of 4096 KB), and experimented with sequential and
random write patterns. We found no correlation between these



parameters and the performance impact; the overhead was
near-identical in all runs. Here, we present the results for a
shared memory size of 10,000 pages, and random writes.

Filesystem. To measure the performance impact of OVER-
HAUL on regular filesystem operations, we ran Bonnie++ [1],
configured to create, stat and delete 102,400 empty files in a
single directory. Since OVERHAUL does not interpose on stat
or unlink system calls, we were unable to reliably measure
any overhead for stat and delete operations, as expected. There-
fore, we only report the runtime overhead for file creation.

For the purpose of this evaluation we temporarily modified
OVERHAUL’s permission monitor to grant access to resources
even when there is no user interaction, in order to exercise
the entire execution path of the benchmarked operation. We
repeated all tests on a Linux system with OVERHAUL, and on
a system with an unmodified kernel and X server, five times
each, and compared the average results when calculating the
overhead. Experiments were performed on a computer with an
Intel i7-930 processor, 9 GB memory, and running Arch Linux
x86-64. We present the results of our experiments in Table I.

Our measurements show that OVERHAUL performs effi-
ciently, with the highest overhead observed being below 3%.
Note that these experiments artificially stress each operation
under unusual workloads, and the overhead for a single opera-
tion is on the order of milliseconds in the worst case, and rang-
ing down to below a nanosecond. Hence, the overhead is often
not noticeable by the user. Moreover, the Bonnie++ benchmark
demonstrates that OVERHAUL does not significantly impact the
performance of regular file open operations.

B. Usability Experiments

We conducted a user study with 46 participants to test
the usability of OVERHAUL. The participants were computer
science students at the authors’ institution, recruited by asking
for volunteers to help test a “defensive security system”. In
order to avoid the effects of priming, participants were not
informed about the functionality of OVERHAUL. The only
recruitment requirement was that the participants are familiar
with using Skype and web browsing, so that they could
perform the given tasks correctly. No personal information was
collected from the participants at any point.

The participants were asked to perform two tasks to test
different aspects of our system. The first task presented them
with a Skype instance on our test machine running OVER-
HAUL, logged into a test account. They were asked to perform
a call to a second test account, while OVERHAUL performed its
security checks without their knowledge. Once complete, an
experimenter asked the participants to compare this process
with their previous experience of using Skype. Specifically,
they were asked to rate the difficulty involved in interacting
with the test setup on a 5-point Likert scale, where a score of
1 indicated that their experience was almost identical, and 5
indicated that the test setup posed significant difficulty.

In the next task, the participants were asked to perform
a specific search on the Internet on an OVERHAUL-enabled
machine. While they were occupied with the task, a hidden
background process that attempted to access the camera was
triggered at a random time, which was blocked by OVERHAUL

and caused a visual alert to be displayed. Once the task was
complete, the participants were asked to explain whether they
have noticed anything unusual while performing their tasks.

At the end of the first phase of the experiment, all 46
participants found the experience to be identical to using
Skype on an unmodified system. This empirically confirms
that OVERHAUL is transparent to the users. In the second
phase, 24 participants immediately interrupted the task when
the OVERHAUL notification was displayed, and alerted the
experiment observer to the blocked camera access. Another
16 noticed the alert, however continued the task and reported
the unexpected camera activity after being prompted by the
observer. Only 6 users reported not having noticed anything
unusual. These results confirm that OVERHAUL alerts are able
to draw most users’ attention while they are occupied with
other tasks, and are effective security notifications.

C. Applicability & False Positives Assessment

To understand whether OVERHAUL interferes with the
normal functionality of applications, or produces false alerts
due to incorrectly blocked legitimate programs, we tested
the system on common applications. To compile the appli-
cation pool for this task, we first manually inspected the
descriptions of all Top Rated packages in the Ubuntu Soft-
ware Center, and identified those that access the resources
OVERHAUL is designed to protect. Next, we searched the
official and community package repositories of Arch Linux,
our experiment environment, with relevant keywords (e.g.,
webcam, microphone, screenshot, capture, record), and added
the hits to the pool. After eliminating the packages that do not
work (e.g., due to missing dependencies) we ended up with
58 applications consisting of video conferencing tools (e.g.,
Skype, Jitsi), audio/video editors (e.g., Audacity, Kwave), au-
dio/video recorders (Cheese, ZArt), screenshot utilities (Shut-
ter, GNOME Screenshot), and screencasting tools (e.g., Istan-
bul, recordMyDesktop). The pool also included popular web
browsers (e.g., Firefox, Chrome); in those cases we tested them
with various web-based video chat applications. Note that the
application pool contained both GUI and console programs.
We manually experimented with each application to verify that
they work as expected, observed whether OVERHAUL alerts
were displayed correctly, and whether there were false alarms.

In our experiments, we encountered a single application
that produced what could be considered a spurious alert.
Specifically, we observed that Skype attempted to access the
camera as soon as the program was launched, before the
user logs into the application. When Skype was configured
to automatically start on boot, this situation led to a camera
access without user interaction, and consequently, OVERHAUL
blocked the access and produced an alert. This did not cause
subsequent video calls to fail, and we argue that blocking such
unanticipated device accesses is the desired behavior in order
to achieve OVERHAUL’s security properties.

While we did not encounter any malfunctioning appli-
cation, this experiment also revealed a peculiar limitation
of OVERHAUL. Specifically, some of the screenshot tools
we tested included an option to delay the shot by a user-
specified time. By design, OVERHAUL does not support this
functionality since the interaction notifications associated with
the application expire before the screen could be captured.



For testing OVERHAUL’s clipboard protection mechanism
we used an additional set of 50 applications including popular
office programs, text and media editors, web browsers, email
clients, and terminal emulators. Since OVERHAUL does not
display alerts for clipboard accesses due to usability reasons,
we instead verified correct functionality by inspecting the logs
produced by our system. In these tests we did not encounter
any false positives or incorrect program behavior.

We note that OVERHAUL does not support running sched-
uled tasks, or persistent non-interactive programs that access
the protected devices (e.g., a cron job that periodically takes
screenshots). While we did not encounter such applications in
our tests, this remains a fundamental limitation of our system.

D. Empirical Experiments

Due to ethical concerns, and the necessity of installing a
custom kernel and malware samples on users’ machines, it
is a difficult task to design a large-scale user study to test
the long-term security and usability properties of OVERHAUL.
Therefore, one of the authors instead volunteered to experiment
with OVERHAUL on their personal home and work computers.

For this experiment, we implemented a sample malware
that runs in the background during the computer’s normal
operation and spies on the user. In particular, it periodically re-
trieves clipboard contents, takes screenshots, and records sound
samples from the microphone. For privacy reasons, our sample
did not record camera images. Since the test was performed
on actual, personal machines used on a daily basis, we only
stored the captured information on disk, while real malware
would exfiltrate it to a remote site. We stress that our malware
sample was created to mimic the behavior of real information-
stealing malware [2], [3], [18], [7], exploiting the standard
interfaces to the sensitive resources exposed by the OS. No
functionality was artificially added or removed that would
ease its detection. We installed this malware on two different
computers belonging to one of the authors, who was made
aware of the collected information, and volunteered for the
task. We enabled OVERHAUL on one of the machines, while
the other was left running unmodified, without protection. We
left the malware running for 21 days. Both computers were
actively used everyday for work and personal use.

At the end of the experiment we confirmed that the
malware running on the OVERHAUL-protected system could
not collect any information, as expected. We checked OVER-
HAUL’s logs and verified that attempts to access the protected
resources were detected and blocked. The malware on the
vulnerable computer, on the other hand, was able to success-
fully spy on the user. We manually investigated the collected
data and found sensitive information including screenshots
of bank account information displayed on an e-banking site,
and email exchanges. The data sampled from the clipboard
included passwords copied from the password manager, phone
numbers, and excerpts from emails. The malware was also able
to collect voice recordings from the headset microphone. We
also investigated OVERHAUL’s logs to see which applications
were granted access to the protected resources. The camera and
microphone were used by two video conferencing applications.
Screen was captured by the system’s default screenshot tool,
and by a desktop recording application. Clipboard accesses

were logged for a large number of applications. During the
testing period of 21 days, we did not encounter any cases of
legitimate applications being incorrectly blocked.

These observations show that spying malware can be
severely damaging, and that OVERHAUL is effective at improv-
ing user privacy in the face of attacks. Conducting a similar
long-term study at a larger scale, in a more scientific frame-
work, is a difficult yet promising future research direction.

VI. RELATED WORK

Previous work has studied capturing user intent to imple-
ment user-driven access control. Roesner et al. [27] present
an approach in which permission granting is built into user
interactions with permission-granting GUI elements called
access control gadgets (ACG). The authors extend ServiceOS
to provide this capability to application developers, and require
that applications be modified to use ACGs. This work captures
user intent at a fine granularity and provides stronger security
guarantees than OVERHAUL as each action is precisely mapped
to a permission. However, our goal is to propose an architecture
that can be retrofitted into traditional OSes transparently. In our
work, we encountered a different set of challenges stemming
from the fact that we are dealing with traditional systems (i.e.,
Linux) that do not provide the features that ServiceOS does.

Gyrus [21] is a virtualization-based system that displays
editable UI field entries in text-based networked applications
back to the user through a trusted output channel, and guar-
antees that this is the information sent over the network.
BLADE [22] infers the authenticity of browser-based file
downloads based on user behavior. While sharing similar goals
with OVERHAUL, these address different security problems.

Systems that use timing information to capture user intent
include BINDER [13] and Not-a-Bot [19]. BINDER associates
outbound network connections with input events to build a
host-based IDS. However, its design does not address the
challenges of IPC, making it unsuitable for use with certain
applications that OVERHAUL targets. Not-a-Bot uses TPM-
backed attestations to tag user-generated network traffic on the
host, and a verifier on the server that checks them to implement
DDoS, spam and clickjacking mitigation measures. These
systems target network-based attacks, whereas OVERHAUL
aims to control access to privacy-sensitive devices.

Some systems that advocate user-authentic gestures for
secure copy & paste between domains are the EROS Window
System (EWS) [31], Qubes OS [6], and Tahoma [12]. Simi-
larly, in this work, we also address the problem of secure copy
& paste so that malicious applications cannot intercept these
requests. There has also been much work in the domain of
trusted computing. For example, Terra [17], Overshadow [10],
and vTPM [9] use virtual machine technology for enabling
trusted computing. In contrast to the above, OVERHAUL does
not require use of virtualization, or explicit user cooperation.

Several operating systems and applications employ popup
prompts to defer privacy policy decisions to users [5], [4],
[8]. However, this approach to user-driven access control has
been shown to suffer from usability issues; for instance, Motiee
et al. [24] demonstrate that Windows users often find User
Account Control prompts distracting, dismiss them without due



diligence, or disable them completely. OVERHAUL sidesteps
these concerns by taking a transparent, unintrusive approach.
Flash Player employs a mechanism that only allows clipboard
operations initiated by user input [23]. OVERHAUL generalizes
this application-specific defense to the entire system and
other sensitive resources, and provides the additional security
property that user input cannot be generated synthetically.

Quire [14] is an extension to Android that enables appli-
cations to propagate call chain context to downstream callees.
Hence, applications can verify the sources of user interactions,
and make policy decisions accordingly. There has also been
much work that aims to enforce install time application permis-
sions within Android (e.g., Kirin [16], Saint [26], Apex [25]).
These approaches enable the user to define policies for pro-
tecting themselves against malicious applications. OVERHAUL
is orthogonal to the smartphone platform security work.

VII. CONCLUSIONS

This paper has shown that an input-driven access control
model based on enforcing the temporal proximity of user in-
teractions to an application’s sensitive-resource access requests
can be retrofitted into traditional operating systems. We have
presented an abstract design independent of the underlying OS,
and described our implementation for Linux and X Window
System. Our approach fulfills the design goals enumerated in
Section II. OVERHAUL provides a trusted input path between
the user and kernel, a display manager that authenticates
hardware-generated input events and interposes on display
resources, and a kernel permission monitor that mediates
access to sensitive hardware (S1), (S2). The display manager
also enforces appropriate visibility requirements on application
windows to prevent hijacking of authentic user interaction (S3),
and ensures that resource accesses are communicated to the
user via visual alerts (S4). OVERHAUL requires no modifica-
tions to existing software, and is transparent to users (D1),
(D3). The performance evaluation and empirical tests of our
prototype show that it remains efficient and practical, while
increasing the security of traditional operating systems (D2).

In future work, we plan to investigate gray-box approaches
to input-driven access control that close the gap between white-
box approaches [27] that require applications to be written
with user-driven access control and the black-box approach
adopted here. One promising direction is to leverage static
and dynamic program analyses to more precisely link user
intent, user input, and device accesses, all without requiring
modifications to existing programs.

Acknowledgments. This work was supported by the National Science
Foundation (NSF) under grant CNS-1409738, and Secure Business Austria.

REFERENCES

[1] “Bonnie++,” http://www.coker.com.au/bonnie++/.
[2] “CERT Polska - Slave, Banatrix and Ransomware,” http://www.cert.pl/

news/10358.
[3] “Dell SonicWALL Security Center - Malware switches users Bank

Account Number with that of the attacker,” https://www.mysonicwall.
com/sonicalert/searchresults.aspx?ev=article&id=614.

[4] “Flash Player Help - Privacy settings,” http://www.macromedia.com/
support/documentation/en/flashplayer/help/help09.html.

[5] “OS X Mountain Lion: Prompted for access to contacts when opening
an application,” http://support.apple.com/en-us/HT202531.

[6] “The Qubes OS Project,” http://www.qubes-os.org/trac.
[7] “Trojan-Spy:W32/Zbot,” http://www.f-secure.com/v-descs/trojan-spy

w32 zbot.shtml.
[8] “Windows Help - What is User Account Control?” http://windows.

microsoft.com/en-us/windows/what-is-user-account-control.
[9] S. Berger, R. Caceres, K. A. Goldman, R. Perez, R. Sailer, and L. Doorn,

“vTPM: Virtualizing the Trusted Platform Module,” in USENIX Secu-
rity, 2006.

[10] X. Chen, T. Garfinkel, E. C. Lewis, P. Subrahmanyam, C. A. Wald-
spurger, D. Boneh, J. Dwoskin, and D. R. Ports, “Overshadow: A
Virtualization-based Approach to Retrofitting Protection in Commodity
Operating Systems,” SIGOPS OSR, vol. 42, no. 2, Mar. 2008.

[11] J. Corbet, “MIT-SHM (The MIT Shared Memory Extension),” http:
//www.x.org/releases/X11R7.7/doc/xextproto/shm.html.

[12] R. S. Cox, S. D. Gribble, H. M. Levy, and J. G. Hansen, “A Safety-
Oriented Platform for Web Applications,” in IEEE S&P, 2006.

[13] W. Cui, R. H. Katz, and W. Tan, “Design and Implementation of an
Extrusion-based Break-In Detector for Personal Computers,” in ACSAC,
2005.

[14] M. Dietz, S. Shekhar, Y. Pisetsky, A. Shu, and D. S. Wallach,
“Quire: Lightweight Provenance for Smart Phone Operating Systems,”
in USENIX Security, 2011.

[15] K. Drake, “XTEST Extension Protocol,” http://www.x.org/releases/
X11R7.7/doc/xextproto/xtest.html.

[16] W. Enck, M. Ongtang, and P. McDaniel, “On Lightweight Mobile Phone
Application Certification,” in ACM CCS, Nov. 2009.

[17] T. Garfinkel, J. C. B. Pfaff, M. Rosenblum, and D. Boneh, “Terra:
A Virtual Machine-based Platform for Trusted Computing,” in ACM
SOSP, Oct. 2003.

[18] A. Gostev, “The Flame: Questions and Answers,” http://securelist.com/
blog/incidents/34344/the-flame-questions-and-answers-51/.

[19] R. Gummadi, H. Balakrishnan, P. Maniatis, and S. Ratnasamy, “Not-a-
Bot: Improving Service Availability in the Face of Botnet Attacks,” in
USENIX NSDI, 2009.

[20] L. Huang, A. Moshchuk, H. J. Wang, S. Schechter, and C. Jackson,
“Clickjacking: Attacks and defenses,” in USENIX Security, 2012.

[21] Y. Jang, S. P. Chung, B. D. Payne, and W. Lee, “Gyrus: A Framework
for User-Intent Monitoring of Text-Based Networked Applications,” in
NDSS, 2014.

[22] L. Lu, V. Yegneswaran, P. Porras, and W. Lee, “BLADE: An Attack-
agnostic Approach for Preventing Drive-by Malware Infections,” in
ACM CCS, 2010.

[23] I. Melven, “User-initiated action requirements in Flash Player
10,” http://www.adobe.com/devnet/flashplayer/articles/fplayer10 uia
requirements.html.

[24] S. Motiee, K. Hawkey, and K. Beznosov, “Do Windows Users Follow
the Principle of Least Privilege?: Investigating User Account Control
Practices,” in SOUPS, 2010.

[25] M. Nauman, S. Khan, and X. Zhang, “Apex: Extending Android Permis-
sion Model and Enforcement with User-defined Runtime Constraints,”
in ASIACCS, 2010.

[26] M. Ongtang, S. McLaughlin, W. Enck, and P. McDaniel, “Semantically
Rich Application-centric Security in Android,” in ACSAC, Dec. 2009.

[27] F. Roesner, T. Kohno, A. Moshchuk, B. Parno, H. J. Wang, and
C. Cowan, “User-Driven Access Control: Rethinking Permission Grant-
ing in Modern Operating Systems,” in IEEE S&P, May 2012.

[28] D. Rosenthal, “Inter-Client Communication Conventions Manual,” http:
//www.x.org/releases/X11R7.7/doc/xorg-docs/icccm/icccm.html.

[29] J. Salim, H. Khosravi, A. Kleen, and A. Kuznetsov, “Linux Netlink
as an IP Services Protocol,” http://www.ietf.org/rfc/rfc3549.txt, Internet
Engineering Task Force, Jul. 2003.

[30] R. W. Scheifler, “X Window System Protocol,” http://www.x.org/
releases/X11R7.7/doc/xproto/x11protocol.html.

[31] J. S. Shapiro, J. Vanderburgh, E. Northup, and D. Chizmadia, “Design
of the EROS Trusted Window System,” in USENIX Security, 2004.

[32] C. Wright, C. Cowan, J. Morris, S. Smalley, and G. Kroah-Hartman,
“Linux Security Modules: General Security Support for the Linux
Kernel,” in USENIX Security, 2002.


