
FRAMESHIFTER: Security Implications of
HTTP/2-to-HTTP/1 Conversion Anomalies

Bahruz Jabiyev, Steven Sprecher, Anthony Gavazzi, Tommaso Innocenti, Kaan Onarlioglu†, Engin Kirda
Northeastern University, †Akamai Technologies

Abstract
HTTP/2 adoption is rapidly climbing. However, in practice,
Internet communications still rarely happen over end-to-end
HTTP/2 channels. This is due to Content Delivery Networks
and other reverse proxies, ubiquitous and necessary compo-
nents of the Internet ecosystem, which only support HTTP/2
on the client’s end, but not the forward connection to the ori-
gin server. Instead, proxy technologies predominantly rely
on HTTP/2-to-HTTP/1 protocol conversion between the two
legs of the connection.

We present the first systematic exploration of HTTP/2-to-
HTTP/1 protocol conversion anomalies and their security
implications. We develop a novel grammar-based fuzzer for
HTTP/2, experiment with 12 popular reverse proxy technolo-
gies & CDNs through HTTP/2 frame sequence and content
manipulation, and discover a plethora of novel web applica-
tion attack vectors that lead to Request Blackholing, Denial-
of-Service, Query-of-Death, and Request Smuggling attacks.

1 Introduction

HTTP/2 has seen quick and massive adoption since its intro-
duction in 2015. A 2020 measurement by HTTP Archive
showed that 64% of HTTP requests were served using
HTTP/2 [10]. However, these measurements come with a sub-
tle yet critical caveat: In practice, clients and origin servers
rarely communicate over end-to-end HTTP/2 channels, but
instead use a mix of HTTP/2 and HTTP/1.1

This situation is largely due to the widespread use of Con-
tent Delivery Networks (CDNs) and other stand-alone reverse
proxies, which intercept and process the traffic exchanged
between a client and origin server. Even though such proxy
technologies support HTTP/2 on the client-facing leg of the
connection, they rarely do so for proxy-to-origin connections,
and instead fall back to using HTTP/1, regardless of the ori-
gin’s support for HTTP/2. As a result, proxies need to dynam-

1In this paper, we will refer to all HTTP/1.* protocol versions simply as
HTTP/1 for brevity.

ically translate between HTTP/2 and HTTP/1 as they forward
packets in either direction.

There is no officially documented account of this need for
the HTTP/2-to-HTTP/1 conversion, or a formal analysis of
its implications, to the best of our knowledge. However, in-
formal exchanges observed online (e.g., a post to the NGINX
mailing list by an NGINX developer [6]) provide insights into
potential reasons. For example, some proxy developers see
no performance benefit to using HTTP/2 for proxy-to-origin
connections, especially when the proxy is co-located with
the origin. Other reasons include general technical debt con-
cerns and the infeasibility of updating established man-in-the-
middle technologies. For instance, web application firewalls
and load balancers that run on proxies are only designed to
process HTTP/1; an overhaul is made difficult by the fact that
HTTP/2 is a binary protocol [2].

Regardless of the reasons, in an exploratory study, we found
that out of the ten most popular reverse proxies, only one
supported upstream HTTP/2 connections–and that support
too was disabled by default. Given the solidifying position of
proxies as critical infrastructure for a scalable Internet, and
their ubiquitous use repeatedly demonstrated by public data
and scholarly measurements (e.g., [4, 12, 21, 22]), HTTP/1 is
poised to remain in heavy use.

Contemporary research on HTTP Request Smuggling, Web
Cache Deception, and cache poisoning attacks have already
shown that web security suffers from the complexity of the
HTTP protocol and discrepancies between the behaviors of
server technologies on the traffic path [13,16,21–23]. HTTP/2-
to-HTTP/1 conversion adds more complexity to an already
intricate web protocol, and opens up the possibility of in-
troducing further flawed HTTP processing mechanisms and
non-conformant behavior. In fact, researchers have already
utilized this new attack surface to successfully mount Request
Smuggling attacks against major proxy technologies and the
origin servers they front [18, 19].

In this paper, we present the first analysis of HTTP/2-to-
HTTP/1 conversion flaws within a scientific framework. The
aforementioned prior HTTP/2 research is limited to investi-

gating basic mangling of a single HTTP/2 frame–the smallest
unit of communication encapsulated within a stream. In con-
trast, we systematically explore ways to manipulate both the
frame sequences and the content therein.2 Specifically, we
aim to answer the following research questions.

(Q1) Do frame sequence and content manipulation cause
HTTP/2-to-HTTP/1 conversion anomalies?

(Q2) What manipulation patterns cause conversion anomalies
and why?

(Q3) What attacks are possible by exploiting conversion
anomalies?

To answer these questions, we develop FRAMESHIFTER,
a grammar-based fuzzer for HTTP/2. FRAMESHIFTER lever-
ages an input grammar to generate valid HTTP/2 frame se-
quences, and then applies sequence and content mutations.
We use FRAMESHIFTER to exercise 12 popular technologies
including 8 stand-alone proxies and 4 CDNs. We then capture
the resulting HTTP/1 requests forwarded by these proxies and
check for anomalies.

Our experiment reveals a myriad conversion anomalies
caused by these prominent technologies. We categorize our
findings and test samples for real-world attacks in our exper-
iment infrastructure. We successfully execute damaging at-
tacks such as Request Blackholing, Denial-of-Service, Query-
of-Death, and Request Smuggling.

We summarize our contributions below.

• We introduce FRAMESHIFTER, a grammar-based fuzzer
for HTTP/2.

• We present a systematic and holistic approach to study
HTTP protocol conversion anomalies.

• We discover novel attack vectors on HTTP/2 conversions
and provide insights into why they happen.

• We demonstrate successful attacks and coordinate miti-
gations with the impacted technology vendors.

Availability. FRAMESHIFTER is open source and available
online [15].

2 Background and Related Work

In this section, we give an overview of the HTTP/2 protocol,
HTTP/2-to-HTTP/1 conversions, HTTP/1 chunked encoding,
grammar-based fuzz testing, and notable related works.

2.1 HTTP/2 Protocol
HTTP/1 suffers from major performance issues such as head-
of-line blocking and packet bloat due to having to repeat head-
ers for each request-response exchange. HTTP/2 addresses

2We provide a refresher on the HTTP/2 protocol in Section 2.

these issues within the protocol. It uses request and response
multiplexing, header compression, and has explicit support
for request prioritization and server push. It does all this with-
out altering the underlying semantics of HTTP, but instead by
redesigning how the data is formatted and transferred.

The new protocol achieves these advantages by introduc-
ing new primitives. Request-response pairs are encapsulated
within a stream. Each stream has a unique identifier, and pack-
ets from different streams can be interleaved, transferred over
a single TCP connection.

Streams are made up of sequences of frames. A frame
is the smallest unit in the protocol. To illustrate, Listing 1
shows a stream with three frames containing a POST request
with the message hello, world! sent to the /echo endpoint
on echo.com. In this example, the HEADERS frame carries
a set of header fields which are later supplemented by the
following CONTINUATION frame. The CONTINUATION frame
has the END_HEADERS flag set, indicating no more headers will
follow. The DATA frame at the end of the sequence contains
the entire message body.

There are many other types of HTTP/2 frames. A short
description for each per the HTTP/2 specification [3] is below.

DATA: Carries a request or a response body.
HEADERS: Carries header fields of a request or a response.
PRIORITY: Specifies the priority of a stream and its depen-
dency on another stream.
RST_STREAM: Terminates the stream.
SETTINGS: Conveys information about preferences and
constraints of the sender.
PUSH_PROMISE: Notifies the peer endpoint about streams it
intends to initiate in the future.
PING: Measures round-trip time and checks if an idle
connection is still functional.
GOAWAY: Shuts down a connection.
WINDOW_UPDATE: Implements flow control.
CONTINUATION: Continues a sequence of header fields.

2.2 HTTP/2-to-HTTP/1 Conversion

HTTP/2 is the most widely used HTTP version by clients
today. A 7M-site measurement using the Chrome browser,
done by the HTTP Archive in 2020, showed that 64% of
requests use HTTP/2 [10].

HEADERS
:method = POST
:path = /echo
.

CONTINUATION
+ END_HEADERS
:scheme = https
host = echo.com

DATA
+ END_STREAM
hello, world!
.

Listing 1: POST request in HTTP/2.

Yet, these requests mainly originate from end users. Re-
verse proxies almost always downgrade HTTP/2 to HTTP/1
when forwarding requests as shown in Figure 1. For instance,
the HTTP/2 request in Listing 1 will be converted into a
HTTP/1 request like those shown in Listing 2.

Reverse proxies perform this conversion for many reasons,
reportedly to support legacy tools that only work on HTTP/1
and to make optimization decisions. Most notably, they see
little to no performance benefit in using HTTP/2 for last-mile
connections [6].

When investigating ten of the most popular reverse proxies,
we found only one that supported HTTP/2 connections to
origins, and not by default. Recent work corroborated that
CDN servers only support HTTP/2 with connections to clients,
and not to origins [13].

2.3 HTTP/1 Chunked Encoding

HTTP/1 supports various ways to encode a request body [7].
One of these is the chunked encoding. Chunked encoding is
especially useful when the size of the data to be transferred is
not known in advance.

Listing 2 shows the same request in two different body
formats. The body of the request on the left is not encoded,
whereas the one on the right is chunk encoded–the "hello,
world!" message is sent in two chunks. Each chunk consists
of a chunk-size (e.g., 7) and chunk-data (e.g., "hello, "). The
final zero-sized chunk indicates the end of the chunked body.

2.4 Grammar-Based Fuzz Testing

Grammar-based fuzzing is commonly used for testing pro-
grams with a complex input structure.

One of the most popular choices for describing an input
language is a context-free grammar (CFG) [25]. A CFG has
four components: a start symbol, non-terminal symbols, termi-
nal symbols, and production rules. The start symbol is where
the expansion of a CFG begins. In Listing 3, the start sym-
bol is denoted by <start>. Symbols surrounded by <> are
non-terminals, meaning they are expanded before the input is
fully generated. For example, <sequence> is expanded to a

POST /echo HTTP/1.1
Host: echo.com
content-length: 13
.
hello, world!

.

POST / HTTP/1.1
Host: echo.com
transfer-encoding:chunked
.
7
hello,
6
world!
0

Listing 2: Requests with a regular and chunked body.

HTTP/2
Reverse Proxy

Upstream
Server

HTTP/2 HTTP/1

HTTP/1HTTP/2

Figure 1: HTTP/2 is used only between end users and HTTP/2
servers. Usually, HTTP/1 is used when sending requests to the up-
stream servers.

sequence of other non-terminal symbols, whereas, <method>
can be expanded into multiple terminal strings. Finally, pro-
duction rules define how symbols are expanded. Each line in
Listing 3 is a production rule.

Grammar-based fuzzing has been widely used by re-
searchers and industry to uncover bugs in all sorts of programs
including language compilers and interpreters [14, 24], and
even web browsers [9].

FRAMESHIFTER combines grammar-based fuzzing with
mutation-based fuzzing to exercise HTTP/2 processors. Pre-
vious research has also adopted similar approaches, for ex-
ample, Aschermann et al. to find bugs in interpreters [1], and
Jabiyev et al. to discover discrepancies between HTTP pro-
cessors [16].

2.5 Related Work
Even though HTTP/2 is commonplace, security research fo-
cusing on this protocol is still relatively limited.

The most closely related work to ours focuses on exploiting
the HTTP/2-to-HTTP/1 request conversion for HTTP Request
Smuggling (HRS) [18,19]. The key insights researchers lever-
aged are that HTTP/2 does not require a content-length
and forbids chunked transfer-encoding, and that header
fields are not separated by a CRLF in HTTP/2. When these vec-
tors are exploited attackers can smuggle a request following a
doctored request.

Guo et al. found two Denial-of-Service attacks by abusing
HTTP/2 conversion features on CDN servers [13]. The first
attack relies on the HPACK mechanism of HTTP/2 where
repeated header fields are saved in a table and transmitted
as an index to save bandwidth. The second takes advantage
of the fact that some CDN servers forward POST requests as
soon as request headers are processed, without waiting for the

<start> ::= <sequence>
<sequence> ::= <headers><data> | <headers>
<headers> ::= <method><path><host>
<method> ::= :method=GET | :method=POST
<path> ::= /echo
<host> ::= echo.com
<data> ::= hello,world! | bye,world!

Listing 3: Example CFG for an HTTP/2 frame sequence.

request body to arrive.
Other academic research has instead focused attacking

HTTP/2 directly, and not on the conversion between different
protocols. Notably, Goethem et al. studied HTTP/2 stream
concurrency and potential timing side-channels [11].

3 Scope and Definitions

3.1 Investigation Scope
We study abnormal HTTP/2-to-HTTP/1 conversions with a
focus on headers and frames that affect the request body
(i.e., content-length and transfer-encoding headers).
The relation between those headers and the request body are
within our scope as well. As discussed earlier, there have
been many attacks focused on these parts of HTTP requests,
warranting their focus for our study [5, 17].

Additionally, we limit the frame sequences used in our ex-
periments to a single stream in order to simplify analysis. We
choose to only study HTTP/2 servers that have the capability
to be run as a reverse proxy. Reverse proxies are the only
servers that do the protocol conversion of interest to us.

3.2 Abnormal Conversions
We define the HTTP/2-to-HTTP/1 conversion as normal if it
meets these conditions:

• One HTTP/1 request is generated from a stream.

• If the generated HTTP/1 request has a body, either
a content-length header is present with a numeric
value equal to the length of the body, or the request has
a transfer-encoding: chunked header and the body
follows the proper chunked format.

The failure to meet these conditions signals the presence
of a body-related anomaly and makes the conversion an ab-
normal conversion.

4 FRAMESHIFTER

We develop a grammar-based HTTP/2 fuzzer called
FRAMESHIFTER, named after a DNA mutation called
"frameshift mutations." Our tool has two main capabilities:
1) generating inputs from a grammar, and 2) mutating the
generated inputs.

4.1 Generating HTTP/2 Frame Sequences
FRAMESHIFTER uses an input grammar to generate HTTP/2
frame sequences. The input grammar defines the content of
each frame type, as well as their combination.

For each production rule in the grammar, a list of options
can be specified. To illustrate this, the example grammar

shown in Listing 3 (line 2) can generate a sequence with a
single HEADERS frame, or a sequence with one HEADERS and
one DATA frame.

Because there are many options specified in the grammar,
FRAMESHIFTER uses a random number generator to seed the
sequence creation. For options that are more of interest, pref-
erences can be codified into the grammar allowing for options
to be selected on a user-specified probability distribution.

4.2 Mutating HTTP/2 Frame Sequences

After FRAMESHIFTER generates an input sequence from a
grammar, it then makes mutations. FRAMESHIFTER supports
two types of mutations: 1) frame sequence mutations and 2)
frame content mutations.

4.2.1 Frame Sequence Mutations

The tool can be configured to apply any number of muta-
tions to a sequence by adding a grammar-defined frame to a
grammar-built sequence at a random position (i.e., insertion
or replacement), or by removing a frame at a random position
from the sequence (i.e., deletion). For example, Listing 4 (left
side) shows an example where GOAWAY and CONTINUATION
frames are inserted at random positions into a sequence of a
HEADERS and DATA stream.

FRAMESHIFTER allows for the specification of probability
distributions for both types of mutation operators. For exam-
ple, in Listing 5, line 13, “insert_symbol” has a 90% selection
probability. Frame types can have their selection probabilities
specified as well, for instance, as shown in Listing 5, line 5.

4.2.2 Frame Content Mutations

Frame sequence mutations can be accompanied by any num-
ber of frame content mutations. Figure 4 (right side) shows an
example where the dash in content-length is replaced by
an underscore, the last letter of the header name is removed,
and a semicolon is added after the value.

FRAMESHIFTER mutates only those fields which are
marked as mutable in the configuration file (see line 9 in
Listing 5). For insertion and replacement operations, a char-
acter is chosen from a pool specified in the configuration, an
example of which is on line 2 of Listing 5. Also, a probabil-
ity distribution can be specified for both mutation operations

CONT.

HEADERS GOAWAY

DATA

HEADERS
:method = POST
:path = /echo

content _ lengt h : 5 ;
.

Listing 4: Example FRAMESHIFTER mutations.

1 # Character pool for insertion/replacement
2 config.char_pool = [(\x01, opts(prob=0.2)), \x02,

\x03, \x04, \x05, \x06, \x07, \x08, \t, \n, ...]↪→

3

4 # Symbol pool for insertion/replacement
5 config.symbol_pool = [(<headers-1>, opts(prob=0.25)),

(<continuation-1>, opts(prob=0.25)), (<data-1>,
opts(prob=0.25)), <goaway-1>, <settings-1>,
<ping-1>, ...]

↪→

↪→

↪→

6

7 # List of mutable symbols and their allowed
8 # mutation types (sequence: 0, content: 1)
9 config.symbol_mutation_types = {<sequence>: 0,

<headers-1-content-length-header-name>: 1,
<headers-1-content-length-header-value>: 1,
<headers-1-transfer-encoding-header-name>: 1,
...}

↪→

↪→

↪→

↪→

10

11 # Mutation operators
12 config.sequence_mutators =
13 [(insert_symbol, opts(prob=0.9)), remove_symbol]
14 config.content_mutators =
15 [(insert_char, opts(prob=0.9)), remove_char]

Listing 5: Excerpt from a configuration file showing a character pool,
a symbol pool, and a list of mutable elements and mutators.

and characters in the character pool (see lines 2 and 15 of
Listing 5).

5 Experiments

To understand abnormal HTTP/2-to-HTTP/1 conversions, we
conduct two experiments, each with identical configurations,
with differing mutations. Table 1 shows general information
about both experiments.

5.1 Experimental Setup
Figure 2 shows an overview of the experiment setup. First,
an input grammar is determined from which a random base
frame sequence is generated. Then the base frame sequence is
mutated randomly based on the seed number. Finally, the mu-
tated frame sequence is sent to all HTTP/2 servers in our lab
setup, which converts the sequence into an HTTP/1 request.
This request is forwarded to a listener server, and ultimately
saved to a log file for later analysis.

Table 1: Experiment overview.

Name Duration # Inputs Mutation Types

ONLY-SEQ 15 hours 2,580,000 frame sequence
SEQ-CON 54 hours 6,690,000 frame sequence and content

HTTP/2
inputs

Mutated
Inputs

generating
inputs

mutating
inputs

Log Files

Input
Grammar

sending
inputs

storing
 requests HTTP/2

Server
TCP Socket

Server

forwarding
HTTP/1 requests

Figure 2: HTTP/2 frame sequences are generated from a grammar,
mutated, and sent to the tested server. The TCP socket server receives
forwarded requests by the tested server and saves them to log files
for later analysis.

We test 12 popular HTTP/2 reverse proxies, including 4
CDNs, using the latest versions available at the time of our
experiment. Table 2 details the servers and their versions.

5.2 ONLY-SEQ Experiment
In this experiment, only frame sequence mutations are applied
on the HTTP/2 base frame sequences.

During the input generation phase, only semantically valid
frame sequences are generated as Listing 6 describes. All
sequences are equivalent to a simple HTTP/1 POST request
with a body, made up of HEADERS, CONTINUATION and DATA
frames (one or two from each) coming together to form the
HTTP/2 base sequence.

We apply a random number of sequence mutations (in the
range of 1 to 4) for each input. Deletion operations easily
destroy valid base sequences resulting in more server errors;
thus we weigh insertion operations at 90%.

The pool from which a new frame is chosen for insertion
contains all ten types of frames defined by the HTTP/2 spec-
ification. We set the probability distribution to select one
of the following frame types 75% of the time: 1) HEADERS
2) CONTINUATION and 3) DATA. These frames are the most

Table 2: Tested HTTP/2 servers and versions.

HTTP/2 Server Tested Version

Apache 2.4.51
NGINX 1.21.3
Caddy 2.4.5
Apache Traffic Server (ATS) 9.1.0
HAProxy 2.5-dev10
Varnish 7.0.0
Traefik 2.5.3
Envoy 1.20.0
Akamai N/A
Cloudflare N/A
CloudFront N/A
Fastly N/A

<start> ::= <base-sequence>
<base-sequence> ::= <headers><data> |

<headers><data><data> |
<headers><cont><data> |
<headers><cont><data><data> |
<headers><cont><cont><data> |
<headers><cont><cont><data><data>

↪→

↪→

↪→

↪→

↪→

Listing 6: Partial grammar showing the possible base sequences.

relevant when it comes to determining the request body.
Unlike the frames in the base sequence, HEADERS

and CONTINUATION frames in the pool have either
content-length or transfer-encoding as one of their
headers, and multiple options for method names. This also
applies to the PUSH_PROMISE frame as it can carry headers.
The relevant part of the input grammar is shown in Listing 7.
The reason for including additional headers and methods is
that they usually have an impact on the request body of the
HTTP/1 requests.

Finally, all frames in the pool have been made to support all
flags (END_HEADERS, END_STREAM, PADDED and PRIORITY)
by overwriting the underlying HTTP/2 code library. However,
native flags have higher precedence during input generation.
The point of building frames with different flag sets is to
confuse the stream parsing of the target server.

While base sequences are semantically correct, mu-
tated input sequences are usually not because of the
transfer-encoding header and unsupported flags added to
frames. However, they are still syntactically valid, and there-
fore they should not cause any frame parsing errors on reverse
proxies.

5.3 SEQ-CON Experiment

In this experiment, in addition to frame sequence mutations,
frame content mutations are also applied on individual frames.
The maximum number for both sequence and content muta-
tions is 2. Thus, the total maximum mutations are capped at
4, the same as the previous experiment.

Content mutations are defined by adding special characters–
ASCII characters excluding alphanumeric characters–only
at the beginning and end of the content-length and
transfer-encoding header names and values, and the re-
quest method. These choices are based on the insights of past
research that shows these mutations are critical in request
body parsing [16, 17].

5.4 Input Coverage

We explore a random sample of 50,000 inputs for both
ONLY-SEQ and SEQ-CON experiments, 100,000 in total, in
order to illuminate the main characteristics of inputs that

<method-name> ::= POST | GET | HEAD | OPTIONS |
TRACE | PUT | DELETE | CONNECT↪→

(..truncated..)
<len-header> ::= <tenc-header> | <clen-header>
<tenc-header> ::= <tenc-name><tenc-value>
<tenc-name> ::= transfer-encoding
<tenc-value> ::= chunked | identity
<clen-header> ::= <clen-name><clen-value>
<clen-name> ::= content-length
<clen-value> ::= 5 | 10 | 15 | 20

Listing 7: Partial grammar for the added HEADERS-like frame types.

FRAMESHIFTER creates and tests. We analyze a random sam-
ple due to computational constraints, yet we argue that it still
provides insight into the coverage of our inputs. Figure 3 de-
picts the distributions for the main characteristics of a request
across the input sample. For instance, the "flags" distribution
shows that roughly 80% of sample input sequences consist of
combinations of only END_STREAM and END_HEADERS, while
15% contain other flag types (i.e., PRIORITY, PADDED and
ACK). The rest contain either END_STREAM or END_HEADERS
flags exclusively.

We also use this sample to shed light on the details of
mutations done by the fuzzer in ONLY-SEQ and SEQ-CON ex-
periments. Table 3 shows what mutation operators are applied
on what elements with what frequency. For instance, while
in 29.4% of sample input sequences a characer is inserted
in the content-length header, in 95.8% of them a frame is
inserted into the input sequence.

6 Findings

After completing the experiments as previously detailed, we
remove normal conversions per our definition, and analyze
all remaining requests in our log for anomalies. We addi-
tionally investigate the originating HTTP/2 input sequences
responsible for said anomalies, and report that below. Since
the observed anomalies for both the ONLY-SEQ and SEQ-CON
experiments overlap considerably, we report them together.

6.1 Conversion Anomalies
We determine 10 types of conversion anomalies and describe
them in detail below.

6.1.1 Incomplete Content-Length Without Body

In this category of abnormal conversions, we observe a
content-length value in the generated HTTP/1 request that
is larger than zero yet the request has no body. According to
section 3.4 of RFC 7230, if the size of the request body is
less than the value given by content-length, the request is
incomplete [7]. An example is shown in Listing 8 (left side).

9
1

multiple
unmutated

multiple
mutated

none

only EH

only ES

Figure 3: The distribution of sequence lengths (i.e., number of
frames), frame types, body length headers (i.e., content-length
and transfer-encoding), HTTP methods and flags (e.g.,
END_STREAM) across the input sample.

6.1.2 Incomplete Content-Length With Body

This anomaly category is very similar to the previous one.
The only difference is that the generated HTTP/1 request
has a body, but its length is less than the content-length
value (Listing 8, right side). We separate this category from
the previous to allow for the different applications of attacks
described later. For example, controlling the request body is
often vital for HRS attacks.

6.1.3 Missing Last Chunk

Just like the previous two categories, requests that fall into
the "Missing Last Chunk" category are also incomplete. As
shown in Listing 9 (left side), the generated request has a
transfer-encoding and a chunked request body. Yet, it is
missing the last chunk which signals the termination of chun-
ked body. According to section 3.4 of RFC 7230, chunked
request body is incomplete if the zero-sized chunk (i.e, last
chunk) is missing [7].

6.1.4 Missing Chunk Data Termination

In this category, the generated HTTP/1 request lacks not just
the last chunk, but also the terminating CRLF that signals the
end of the chunk data. transfer-encoding is present in the
request and the body is chunked. An example for this category
is the same as the one shown in Listing 9 (left side), except
that the CRLF in the very end of the body is missing.

POST / HTTP/1.1
content-length: 10

.

POST / HTTP/1.1
content-length: 10

BBBBB

Listing 8: Requests with incomplete bodies.

Table 3: Frequency of mutation operations (the third column does
not sum to 100% as multiple mutation operations can be applied on
a single input).

Mutation Operator Mutated Element % Inputs

insert_symbol sequence 95.8

remove_symbol sequence 18.5

content-length 29.4
insert_character transfer-encoding 10.1

HTTP method 12.9

6.1.5 Missing Chunk Data

As the example in Listing 9 (right side) shows, even though
chunk-size is present, chunk-data, chunk-data termination,
and the last chunk are all missing. Similar to the previous
two categories, this category can be classified under incom-
plete transfer-encoding requests. The reason for treating
them separately, is again their significance from an attack
perspective.

6.1.6 Invalid Header Value

This category refers to requests with an invalid
content-length. As an example, Listing 10 (left side)
shows a non-numeric value given by the content-length.
In section 3.3.3 of RFC 7230, it is stated that a recipient
must respond with a 400 (Bad Request) status code to
a request with a content-length header field having an
invalid value [7], yet the reverse proxy performs the protocol
downgrade anyway.

6.1.7 Invalid Header Termination

In this category, generated requests have a content-length
header which is terminated by a single LF instead of CRLF.
According to section 3.5 in RFC 7230, the terminator for
header fields is the CRLF [7] sequence. Even though the same
specification also states that a recipient may recognize a single
LF as a terminator, some HTTP servers do not. For example,
Apache HTTP server responds with a 400 (Bad Request)
status code to a request with a content-length terminated
by a LF.

POST / HTTP/1.1
transfer-encoding:chunked
.
5\r\nBBBBB\r\n

POST / HTTP/1.1
transfer-encoding:chunked
.
5\r\n

Listing 9: Requests with incomplete chunked bodies.

POST / HTTP/1.1
content-length: 5&
.
BBBBB
.

POST / HTTP/1.1
content-length: 5
content-length: 10
.
BBBBB

Listing 10: Requests with content-length anomalies.

6.1.8 Repeating Header Name

In this category, generated requests have two
content-length headers with different values. List-
ing 10 (right side) shows an example for this category.
According to section 3.3.3 of RFC 7230, a request with
multiple content-length header fields having differing
values must be treated as an error and the recipient must
respond with a 400 (Bad Request) status code [7]. Yet, in
our experiments we still observe reverse proxies forwarding
these requests.

6.1.9 Repeating Header Value

"Header value" refers to the chunked value of
transfer-encoding. The requests of this category
have a transfer-encoding header with two or more
chunked values (i.e., transfer-encoding: chunked,
chunked). While RFC 7230 allows multiple transfer
coding values in the transfer-encoding (for example,
transfer-encoding: gzip, chunked, to signal that
chunked and gzip encodings have been applied to the
request body), section 3.3.1 of the same specification states
that a sender must not apply chunked more than once to a
request body [7].

6.1.10 Multiple Forwarded Requests

In this category of abnormal conversions, multiple HTTP/1
requests are generated as a result of the conversion. In our
experiments, all the frames in the input frame sequence are
contained within a single stream (i.e., the stream identifier
is 1 for all frames), only a single HTTP/1 request should
be generated. In fact, section 2 of RFC 7540 says that each
HTTP request/response exchange is associated with its own
stream [3].

6.2 Input Categories

We categorize all HTTP/2 inputs that cause the conversion
anomalies discussed above in this section. All of these input
categories along with the conversion anomalies they cause
are shown in Figure 4.

6.2.1 Missing END_STREAM

This category of inputs creates an anomaly where the gener-
ated HTTP/1 request is incomplete. This category affects all
servers except for Apache, NGINX, and Cloudflare.

For most of the affected servers the input sequence does
not have an END_STREAM flag. CloudFront is the only server
that has slightly different behavior. If the first frames are of
DATA type and carry the END_STREAM flag, CloudFront ignores
those frames and considers just the frames that follow.

When the END_STREAM is missing, the reverse proxy simply
rushes to forward the request assuming that the stream is not
finished yet and more is to come.

6.2.2 No Mismatch Check

Similar to the previous category, inputs in this group force
Caddy and Traefik to forward an incomplete request.

For valid streams with an END_STREAM flag, these servers
do not check for a match between a larger content-length
and the smaller number of bytes it receives in DATA frames.
As a result, they generate and forward a request where
content-length value does not match the length of the
body.

6.2.3 HEADERS After END_HEADERS

This input category also creates abnormal conversions where
the generated request is incomplete. For Caddy, ATS, Varnish,
Traefik, and Fastly, when a HEADERS frame follows another
HEADERS frame bearing the END_HEADERS flag, this anomaly
happens. The reverse proxy halts the stream processing once
it encounters this pattern (i.e., a HEADERS frame after the
END_HEADERS) and forwards the request as it stands.

6.2.4 Only First DATA

This is the last input category that generates incomplete re-
quests and it affects ATS, Envoy Proxy, and Fastly. When
the payload of a DATA frame creates a mismatch between
the overall payload size and the content-length value, the
proxy halts the stream processing and forwards the request
as it stands (i.e., until the DATA frame which creates the mis-
match).

6.2.5 No Mutation Filter

Inputs that fit into this category result in HTTP/1 requests
where either the header value or the header termination is
invalid. Unsurprisingly, the HTTP/2 input has some non-
alphanumeric ASCII character added to the content-length
value in a HEADERS frame.

ATS, Varnish, and Akamai all seem to have insufficient
filtering for non-alphanumeric characters. For example, ATS

Figure 4: Input categories causing conversion anomalies.

does not filter \n from the input, but Varnish and Aka-
mai do. The preservation of \n by ATS results in an
HTTP/1 request having a content-length with no value
or a content-length with an invalid termination.

6.2.6 No Duplicate Check

Requests resulting from inputs in this category contain more
than one content-length header. The only server this af-
fects is Varnish because they do not check for duplicate
content-length headers and blindly add them to the gener-
ated request.

6.2.7 GET Method with DATA

This input category only contains the sequences with a
HEADERS frame with the GET method followed by a DATA
frame containing data. We see this pattern in input sequences
that cause ATS to forward multiple requests. The same behav-
ior is observed when the method is HEAD or OPTIONS instead
of GET.

6.2.8 TRACE with POST

This is another category that makes ATS generate multiple
forwarded requests. The input sequences in this category
have two consecutive HEADERS frames. The first HEADERS
frame has the TRACE method with the END_HEADERS flag
set. The second HEADERS frame has the POST method with
END_HEADERS set again. These two HEADERS frames are fol-
lowed by a DATA frame.

6.3 Causes of Anomalies
In this section, we seek to clarify the causes of anomalies in
light of direct correspondence with vendors.

6.3.1 Mode of Operation

Reverse proxies have two modes of operation: buffering and
streaming. In buffering mode, a proxy waits for the entire
client request to complete before forwarding it to the upstream
service. In streaming mode, a proxy eagerly transmits requests
without waiting for their completion for the sake of memory
efficiency and speed.

We observe this in our experiments, particularly on inputs
missing END_STREAM (i.e., Section 6.2.1). Conversion anoma-
lies listed in Section 6.1.1-6.1.5 (i.e., those creating incom-
plete requests) can be partly attributed to the streaming mode
of reverse proxies forwarding incomplete requests once they
receive the END_HEADERS flag. Specifically, Akamai, Cloud-
Front, Fastly, Caddy, ATS, HAProxy, Varnish, Traefik, and
Envoy Proxy run in streaming mode by default, resulting in
their prevalence in Figure 4.

6.3.2 Error Handling

In addition to mode of operation, the way in which re-
verse proxies handle errors in an input stream contribute to
the anomalies discussed in Section 6.1.1-6.1.5. Input pat-
terns discussed in Section 6.2.2-6.2.4 (i.e., "No Mismatch
Check", "HEADERS After END_HEADERS" and "Only
First DATA") typically trigger an error during stream pro-
cessing and are handled one of two ways. Reverse proxies
can choose to forward the request to the upstream server and
close the connection shortly after to signal the error, or they
can send an error response to the client and refrain from for-
warding a request. When reverse proxies choose to forward
the request followed by closing the connection, we find the
aforementioned anomalies.

For instance, Caddy and Traefik react to inputs contain-
ing a mismatch between content-length value and data
payload size with an error. As a result, shortly after those re-
verse proxies forward a request, they close the connection
carrying that request by sending a FIN packet. Similarly,
ATS raises an error when inputs have the "HEADERS After
END_HEADERS" pattern and forwards the request. Fastly
and ATS also raise an error for inputs in the "Only First
DATA" category and forward requests.

6.3.3 Insufficient Validation

Conversion anomalies listed in Section 6.1.6-6.1.8 can be
explained by insufficient validation. There are some cases
where irrelevant characters are allowed to be added to sensi-
tive parts of a request (e.g., content-length value or the end
of a header field). In other cases, there is simply no check in

place to prevent duplicate headers with different values. To be
more specific, while Varnish does not prevent the presence of
two content-length header fields with differing values in a
forwarded request, Akamai, ATS, and Varnish allow irrelevant
characters.

6.3.4 Faulty Retrying

Conversion anomalies listed in Section 6.1.9-6.1.10 can be
attributed to faulty behavior of ATS. Specifically, when ATS
encounters an input like those explained in Section 6.2.7-6.2.8
(i.e., "GET Method with DATA" and "TRACE with POST"),
it triggers an error and forwards the request along but fails to
close the connection due to a confirmed bug.

As a result, the connection is kept open and it does not
receive a response to the forwarded incomplete request. ATS
keeps retrying hoping for a response to send back to its client.
It also adds "chunked" value to the transfer-encoding in
the request in each retry because of another confirmed bug.

7 Attacks

To understand whether our identified HTTP/2-to-HTTP/1 con-
version anomalies can be abused, we come up with a list of at-
tacks that can possibly be created by each conversion anomaly.
We then test each of these attacks on every possible reverse
proxy and origin server pair in a lab environment. We ex-
clude pairs where the reverse proxy is a non-CDN server (e.g.,
Apache) and a CDN server is upstream (e.g., Akamai), since
they are not likely to be deployed in that order in practice.

During our tests, we run a web application on the origin
to help us better understand the effects of each attack. We
deploy the application directly to the upstream server unless
we are testing a pair where the origin is unable to run as a
web server.

7.1 Denial-of-Service
The Denial-of-Service (DoS) attack we test for is one in which
a mutated frame sequence causes the reverse proxy to send an
HTTP/1 request with an incomplete body. The origin server
then waits, expecting the remaining data until a timeout oc-
curs. When a new request then arrives at the reverse proxy, it
cannot be forwarded to the origin because all persistent con-
nections are exhausted, and so the request cannot be processed
in a timely manner.

To test for DoS, we use the following configuration. For
each reverse proxy, we compile every mutated frame sequence
that resulted in any of the following anomalies: "incomplete
content-length with body", "incomplete content-length with-
out body", "missing last chunk," "missing chunk data termina-
tion," and "missing chunk data." We choose these anomalies
because each of them results in HTTP/1 requests that are miss-
ing data. The intuition is that if an origin server is vulnerable

to a DoS attack, it will hang while waiting for the rest of the
data to arrive.

When the reverse proxy is not a CDN, we configure it to
use just one persistent connection to the upstream server. This
simplifies the attack detection process, as we do not have to
consider the possibility of an attack not working just because
a request was processed on a different connection. We later
confirm that our detected attacks work with a larger number
of persistent connections.

Then, we send the mutated frame sequences one at a time,
and send a normal frame sequence like the one in Listing 1
between each mutated frame sequence. This way, if an error
occurs in the handling of a normal sequence, then we know
that the previous sequence interfered in some way. We wait
for a response to arrive or time out after five seconds before
sending the next sequence.

When the reverse proxy is a CDN, we do not have control
over the number of persistent connections. In these cases, we
send the mutated sequences in batches of 50 at a time to the
CDN, and send 50 normal sequences in parallel after that. In
doing this, we hope that if a mutated sequence would enable
an attack, either one of the other mutated sequences or one of
the normal sequences would be forwarded on the same port
and would be interfered with, allowing us to detect the attack.

While sending the sequences, we collect all TCP traffic
between the reverse proxy and the upstream server. Because
CDNs may forward HTTP/1 requests strictly over HTTPS,
rendering inspection of the traffic useless, we additionally
collect the access logs on the upstream server to understand
what requests arrived and how the server processed them.

For all reverse proxy and upstream server pairs, we note
that normal frame sequences return very quickly, consistently
within a fraction of a second. To detect a DoS attack, we flag
any mutated frame sequences which take multiple seconds to
receive a response or that time out.

To confirm the DoS, we send these flagged sequences and
then immediately send a normal sequence without waiting
for a response from the first. In the case of CDNs, we send a
batch of 256 of the sequences in parallel followed by a single
normal sequence. If the normal sequence also takes several
seconds to return, then we say that DoS is possible.

As shown in Figure 5, we find that a DoS attack is possible
on every upstream server when Caddy, HAProxy, or Envoy
Proxy is the reverse proxy, and that the attack is created by
anomalies "incomplete content-length with body," "incom-
plete content-length without body," and "missing last chunk."
We additionally find that DoS is possible when Akamai is
the reverse proxy and Apache is the upstream server, and is
created by all five types of anomalies.

For all affected pairs, an attacker can repeatedly send the
mutated frame sequences to make all persistent connections
to the origin unresponsive until a timeout occurs between
the reverse proxy and origin. Only when this timeout occurs
will requests that arrived during this period be served. As

the attacker cannot control this timeout value, an attacker
likely cannot completely bring down the reverse proxy, but
can drastically reduce its throughput depending on how long
the timeout duration is.

7.2 Request Blackholing

Another attack type we test for is a Request Blackholing
attack. In Request Blackholing, a mutated frame sequence
causes the reverse proxy to send an HTTP/1 request with
an incomplete body. Instead of the connection between the
reverse proxy and origin hanging like in the DoS attack, sub-
sequent forwarded requests here are interpreted as part of the
body of the mutated sequence and are never processed cor-
rectly by the origin. These requests that are never processed
are considered "blackholed."

To test for Request Blackholing, we use the same configura-
tion and frame-sequence testing methodology as in testing for
DoS attacks. To detect Request Blackholing, we look for any
normal sequences that either never received a response or that
received a 400 error code and note the mutated sequence that
was sent directly before it. We confirm the attack by sending
just that mutated sequence followed by the normal sequence.
In the case of CDNs, we send a batch of 256 of the mutated
sequences in parallel, followed by one normal sequence. If
we see that the normal sequence again either receives a 400
response code or never receives a response, then we say that
the attack is possible.

As shown in Figure 5, we find that Request Blackholing is
possible when ATS is the reverse proxy and either NGINX or
HAProxy is the origin server, and that only anomalies in the
category "incomplete content-length without body" make the
attack possible.

The fact that only anomalies of this type enabled the attack
is significant as it reduces an attacker’s capabilities. Depend-
ing on how much control an attacker has over the request
that enables the attack, a Request Blackholing attack could
be used as part of a powerful request hijacking attack.

For example, imagine a website where some page accepts
POST requests and where some part of the body of the re-
quest is displayed on the page itself, such as the page to edit
one’s profile on a social media site. If one sends the mutated
sequence that results in a Request Blackholing attack as a
request to this page, then subsequent requests are interpreted
as part of the body and are displayed in plain text on the target
page, potentially allowing an attacker to steal cookies and
passwords.

However, because the only anomaly type that enabled the
attack does not have a body, an attacker does not have the
ability to send any data that might be required of the request
for it to be interpreted correctly by the target application. Thus,
in the absence of an "echo" page that displays anything sent
in the body, an attacker can only use the Request Blackholing
attack to perform a DoS on the affected server pairs.

An additional caveat of the attack is that each mutated
sequence allows for the blackholing of just one other request,
making the attack symmetric. An attacker can repeatedly
send out mutated frame sequences and blackhole other users’
requests as fast as they can send them out.

7.3 Query-of-Death
We additionally discovered a Query-of-Death attack that
works when Caddy is the reverse proxy. In this attack, the
mutated sequence is sent once per persistent connection be-
tween Caddy and the origin. Requests are then forwarded until
Caddy becomes unresponsive. The Caddy process does not
crash, but becomes unresponsive even to control commands,
so Caddy must be killed and manually restarted.

As shown in Figure 6, the attack is possible between Caddy
and every origin server except for Varnish using anomalies
in the categories "incomplete content-length with body," "in-
complete content-length without body," and "missing last
chunk." We only speculate, but we believe the attack does
not work on Varnish because it quickly detects the anomalous
HTTP/1 request and fails early, whereas some subsequent
communication between the other origins and Caddy causes
the attack.

7.4 CPDoS Attack
Cache-Poisoned Denial-of-Service (CPDoS) attacks aim to
have a caching server store a negative response (i.e., error
response) for a legitimate URI (e.g.,/home) [23]. An attacker
must send a malicious request (with the victim URI) that
gets forwarded by the caching server to the origin server.
When the request reaches the origin server, it triggers an error
and eventually the origin returns a negative response. This
negative response is saved by the caching server which is now
poisoned.

To test for this attack, we send every converted HTTP/1
request captured to each of our twelve servers. We look for re-
quest response pairs where the request method is a "cacheable
method" and the response status code is "cacheable by de-
fault" as defined by RFC 7231 [8].

We find that the "repeating header value" conversion
anomaly meets this criteria. Essentially, when ATS gener-
ates and sends a GET request with transfer-encoding:
chunked, chunked header to NGINX, Caddy, Traefik or
Envoy Proxy, the upstream server responds with 501 Not
Implemented status code.

By default, ATS does not cache negative responses. We
enable negative response caching on ATS, put all susceptible
servers one by one as the upstream server to the ATS and
finally send HTTP/2 frame sequences which create the needed
conversion anomaly.

Our attempts to poison the ATS cache all failed. We believe
that it is because the abnormal request is not the first request

forwarded by ATS. Essentially, ATS forwards multiple re-
quests for a single HTTP/2 input sequence and the poisoning
request is the second request forwarded to the upstream server
and ATS does not cache the response for a request it does not
forward first.

7.5 Response Queue Poisoning
Researchers have shown that it is possible to poison the re-
sponse queue of a reverse proxy with an additional HTTP
response of which the reverse proxy is unaware [5, 18]. This
forces the reverse proxy to mix up the request response match-
ing and eventually allows the attacker to retrieve responses for
the requests of victim users. Attackers achieve this through
smuggling an HTTP request into the request buffer of the up-
stream server and have it send a response back to the reverse
proxy for the smuggled request. As a result, the reverse proxy
sends that response for another request and from that point
on the response queue is poisoned with an "off by one" error
until the underlying connection is killed.

Reverse proxies that are affected by the "multiple for-
warded requests" anomaly, send additional requests to up-
stream servers. None of those requests come from the down-
stream server (or client) showing a clear potential for Re-
sponse Queue Poisoning.

In a test environment, we put susceptible reverse proxies
before every server separately. We create two different pages
on the origin, one for the victim and one for the attacker.
The simulated victim continuously sends HTTP/2 requests
to the target and the simulated attacker sends HTTP/2 frame
sequences which create the "multiple forwarded requests"
anomaly. Finally, we look for a case where the victim receives
a response to the page requested by the attacker.

In the end, we did not observe the victim user receiving a
response intended for the attacker. However, we believe that
the outcome could be different in a real-world setup because
the number of users and requests in real-world setups is much
larger than what we have in this test setup.

7.6 HTTP Request Smuggling
Past research has shown that when the body parsing behavior
of a reverse proxy and the upstream server differs in a way
that they disagree about the message boundaries, bad things
happen [5,16,17]. Ultimately one server sees a single request,
whereas the other sees two. The "second request" (i.e., smug-
gled request) can be used for many type of severe attacks
from cache poisoning to request hijacking.

Any body parsing difference between two servers in the re-
quest chain can be abused for HRS. Many conversion anoma-
lies, especially "invalid header value" and "repeating header
name", we document in this paper show a clear potential for
causing a difference in body parsing behavior. For "invalid
header value", as the example in Listing 10 (left side) shows,

Figure 5: Attacks caused by abnormal conversions.

non-numeric values are forwarded to the upstream server. If
an upstream server happens to trim anything not numeric to
extract the header value or if it decides to ignore the body as
the value is invalid, a real potential for HRS emerges. As an
example, if a comma is added to the content-length value,
previous research identified that some servers parse this differ-
ently [16]. The requests in the "repeating header name" (i.e.,
with two content-length headers with different values) cat-
egory can cause a different body parsing behavior between
servers, if one of them chooses the first content-length to
decide the body size while the other chooses the second.

We take every request (including the ones from the sus-
ceptible categories) captured from the forwarding of each
reverse proxy and send them to each server and examine the
responses. We find that some responses include two response
codes signaling that the server sees two requests in what was
sent by another server as a single request. We then manually
check them to confirm whether it can be used for HRS.

Interestingly, we find that none of the requests which we
confirm to have the HRS ability is generated as a result of an
abnormal conversion. They usually have a request method or
an invalid header name which makes them useful for HRS.
Affected pairs are shown in Figure 6. The reasons for each of
them is summarized below:

• ATS, HAProxy, Envoy Proxy and Fastly forward a re-
quest with HEAD method, transfer-encoding header
and a chunked body. Caddy and Traefik ignore the body
in such requests.

• Cloudflare and Fastly forward a request with GET or HEAD
method and a request body. Akamai ignores the body in
such requests.

• Akamai forwards a request with transfer-encoding:
identity having a vertical tab character or a new
page character added before the header name, a

Figure 6: Attacks not caused by abnormal conversions.

transfer-encoding: chunked header and a request
body. CloudFront ignores the body in such requests.

The HRS case affecting Akamai-CloudFront is interesting
from the conversion anomaly perspective. We do not count
it as an conversion anomaly, because essentially the reverse
proxy can treat it as any header that it does not recognize and
forward it to the upstream. It is interesting that CloudFront
treats that as a valid header and chooses not to see the response
body in a request with two separate transfer-encoding
headers having different values.

Even though the HRS cases we find in this research are
not caused by an abnormal conversion, we think that they are
still valuable because they demonstrate one more use case
of FRAMESHIFTER. To give an example, FRAMESHIFTER
can be used to generate and send a large number of mutated
HTTP/2 frame sequences to a server pair where the reverse
proxy is an HTTP/2 server and the upstream server is an
HTTP/1 server. If the upstream server responds with multiple
status codes, it can be concluded that HRS is affecting the
tested pair.

8 Discussion & Conclusion

In this paper we set out to explore the HTTP/2-to-HTTP/1
protocol conversion, a near-universal behavior observed with
all major CDNs and reverse proxy technologies, from a se-
curity viewpoint. In doing so, we successfully met our goals
and answered the research questions we laid out in Section 1.
Specifically, we presented FRAMESHIFTER and an accompa-
nying HTTP/2 frame manipulation methodology to test pop-
ular proxy technologies against conversion anomalies (Q1),
systematically explored the causes and effects involved in Sec-
tion 6 (Q2), and finally translated our findings into concrete
web application attacks in Section 7 (Q3).

Before we wrap up, below we highlight the fundamental
limitations of our work and provide a high-level analysis of
the discovered issues from a systems safety engineering lens.

Limitations. The anomaly discovery phase of this work
relies on fuzz testing. While fuzzing has evolved into a de
facto method for security analysis, as the name implies, fuzz
testing is primarily a testing tool. Consequently, the find-
ings we present in this paper are the results of a system-
atic investigation, but not an exhaustive one. That is a funda-
mental limitation of all fuzzing-based approaches. We make
FRAMESHIFTER publicly available in the hopes that the secu-
rity community expands on it, and that these findings lead to
more robust methodologies for analyzing protocol conversion
anomalies.

We also point out that, while all attacks we present are prac-
tical, real-life exploitation will still be impacted by various
factors including proxy configurations, security products de-
ployed on path that can block anomalous requests, and other
man-in-the-middle devices that can transform the traffic in
unpredictable ways, rendering some attacks ineffective. This
is not a limitation of our work per se.

A Systems Safety Problem...with a Different Spin.
Recent trends in web application security signal that

systems-level attacks are rapidly taking over the more tra-
ditional exploitation vectors. Attacks such as Web Cache
Deception and HTTP Request Smuggling are harbingers of a
new wave of web application security concerns affecting sys-
tem interactions, rather than individual component resilience.
In particular, both Mirheidari et al [21, 22] and Jabiyev et
al. [16] explicitly call out that these attacks are a consequence
of the increasingly complex interactions between Internet
infrastructure components (i.e., clients, servers, and proxies),
and that there is no particular failing component–this tracks
the systems safety engineering literature [20].

The issues we present in this paper begin in a similar vein.
Foremost, protocol conversion is necessitated due to the ex-
istence of competing HTTP versions and conflicting perfor-
mance & business requirements between the entities involved
in the communication. Furthermore, vulnerabilities depend
on the exact technologies present on the traffic path, their
designs, and their implementation specifics. Therefore, we
reiterate the takeaways of prior work: Identifying protocol
conversion vulnerabilities and their impact on web applica-
tions is not straightforward when systems are analyzed in a
bubble. The methodologies, tools, technologies devised to an-
alyze and address these concerns need to consider all HTTP
processors on the traffic path and their complex interactions.
Unfortunately, doing security at this scale still poses many
open research questions.

Despite this general view of systems safety, we note that
the specific categories of attacks we present in this paper have
relatively straightforward mitigations that could directly be
implemented on the proxies. In other words, every conversion
anomaly we have identified is patchable by the respective

vendor, without coordination with the client or origin technol-
ogy vendors. Thus, our findings represent a more tractable
subset of the aforementioned systems safety problem space.
However, we point out once again that our fuzzing-based dis-
covery scheme is not exhaustive, and that this observation is
not generalizable to all protocol conversion anomalies.

The above observation also implies that conversion anoma-
lies could be minimized with guidance from the relevant pro-
tocol specifications, in an effort to standardize this mechanism
among different technologies and avoid the most common
pitfalls. In fact, the HTTP/2 protocol specification RFC 7540,
under the section “Security Considerations, Intermediary En-
capsulation Attacks” briefly touches on similar attack vectors,
but does not go into details [3]. While standardization is not
the panacea for this issue, we believe there is significant room
for improving the state of the art by providing formal HTTP/2-
to-HTTP/1 conversion guidelines.

Ethical Considerations

We have conducted this study within a controlled experimen-
tal setup. We did not launch any attacks against external enti-
ties. We followed the established coordinated-disclosure best
practices; we notified all tested technology vendors of our
findings, provided them with a copy of this paper, and made
our data and team available for further assistance.

The vendors have acknowledged the impact of our reported
issues, and we have coordinated with them on implementing
the appropriate mitigations. Apache Traffic Server confirmed
the Request Blackholing issue and all the anomalies we re-
ported; they are planning to assign the appropriate CVEs and
have patches ready in an upcoming release. Envoy Proxy
confirmed the DoS attack and discovered a gap in their DoS
protection. Varnish also confirmed our finding and reported
they would have a patch in their next release. Caddy requested
us to report the findings to their underlying Go HTTP library,
developed and maintained by Google. Google confirmed the
Query-of-Death attack; they will have a patch in the next
release and a CVE assigned for the issue. One of the authors
of this work is affiliated with Akamai, and has coordinated
the fixes internally with the vendor. The remaining vendors
acknowledged receiving our report, but did not provide infor-
mation about the remediation actions they took.

Acknowledgments

The authors would like to thank our anonymous reviewers
and our shepherd Peter Snyder for their feedback and guid-
ance. This work was partially-funded by the National Science
Foundation grants CNS-1703454 and 2127200.

References

[1] Cornelius Aschermann, Tommaso Frassetto, Thorsten
Holz, Patrick Jauernig, Ahmad-Reza Sadeghi, and
Daniel Teuchert. NAUTILUS: Fishing for Deep Bugs
with Grammars. In The Network and Distributed System
Security Symposium, 2019.

[2] Yaron Azerual. HTTP/2 Will Break Your Se-
curity – Here’s How to Fix it, 2015. https:
//blog.radware.com/security/2015/09/http2-
security-fix/.

[3] Mike Belshe, Roberto Peon, and Martin Thomson.
Hypertext Transfer Protocol Version 2 (HTTP/2),
2015. https://datatracker.ietf.org/doc/html/
rfc7540.

[4] BuiltWith. BuiltWith Technology Lookup.
https://trends.builtwith.com/CDN/Content-
Delivery-Network.

[5] Evan Custodio. Practical Attacks Using HTTP Request
Smuggling by @defparam. NahamCon, 2020. https:
//www.youtube.com/watch?v=3tpnuzFLU8g.

[6] Maxim Dounin. HTTP/2 Gateway. NGINX
Mailing List, 2015. https://mailman.nginx.org/
pipermail/nginx/2015-December/049445.html.

[7] Roy T. Fielding and Julian F. Reschke. Hypertext Trans-
fer Protocol (HTTP/1.1): Message Syntax and Routing,
2014. https://datatracker.ietf.org/doc/html/
rfc7230.

[8] Roy T. Fielding and Julian F. Reschke. Hypertext Trans-
fer Protocol (HTTP/1.1): Semantics and Content, 2014.
https://www.rfc-editor.org/rfc/rfc7231.

[9] Ivan Fratric. Domato. GitHub Repository, 2021. https:
//github.com/googleprojectzero/domato.

[10] Andrew Galloni, Robin Marx, and Mike Bishop.
HTTP/2, 2020. https://almanac.httparchive.org/
en/2020/http.

[11] Tom Van Goethem, Christina Pöpper, Wouter Joosen,
and Mathy Vanhoef. Timeless Timing Attacks: Exploit-
ing Concurrency to Leak Secrets over Remote Connec-
tions. In USENIX Security Symposium, 2020.

[12] Run Guo, Jianjun Chen, Baojun Liu, Jia Zhang, Chao
Zhang, Haixin Duan, Tao Wan, Jian Jiang, Shuang Hao,
and Yaoqi Jia. Abusing CDNs for Fun and Profit: Se-
curity Issues in CDNs’ Origin Validation. In IEEE In-
ternational Symposium on Reliable Distributed Systems,
2018.

https://blog.radware.com/security/2015/09/http2-security-fix/
https://blog.radware.com/security/2015/09/http2-security-fix/
https://blog.radware.com/security/2015/09/http2-security-fix/
https://datatracker.ietf.org/doc/html/rfc7540
https://datatracker.ietf.org/doc/html/rfc7540
https://trends.builtwith.com/CDN/Content-Delivery-Network
https://trends.builtwith.com/CDN/Content-Delivery-Network
https://www.youtube.com/watch?v=3tpnuzFLU8g
https://www.youtube.com/watch?v=3tpnuzFLU8g
https://mailman.nginx.org/pipermail/nginx/2015-December/049445.html
https://mailman.nginx.org/pipermail/nginx/2015-December/049445.html
https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc7230
https://www.rfc-editor.org/rfc/rfc7231
https://github.com/googleprojectzero/domato
https://github.com/googleprojectzero/domato
https://almanac.httparchive.org/en/2020/http
https://almanac.httparchive.org/en/2020/http

[13] Run Guo, Weizhong Li, Baojun Liu, Shuang Hao, Jia
Zhang, Haixin Duan, Kaiwen Sheng, Jianjun Chen, and
Ying Liu. CDN Judo: Breaking the CDN DoS Protection
with Itself. In The Network and Distributed System
Security Symposium, 2020.

[14] Christian Holler, Kim Herzig, and Andreas Zeller.
Fuzzing with Code Fragments. In USENIX Security
Symposium), 2012.

[15] Bahruz Jabiyev. Grammar-based HTTP/2 fuzzer
with mutation ability, 2022. https://github.com/
bahruzjabiyev/frameshifter.

[16] Bahruz Jabiyev, Steven Sprecher, Kaan Onarlioglu, and
Engin Kirda. T-Reqs: HTTP Request Smuggling with
Differential Fuzzing. In ACM Conference on Computer
and Communications Security, 2021.

[17] James Kettle. HTTP Desync Attacks: Request
Smuggling Reborn. PortSwigger Web Security
Blog, 2019. https://portswigger.net/blog/http-
desync-attacks-request-smuggling-reborn.

[18] James Kettle. HTTP/2: The Sequel is Always Worse.
PortSwigger Web Security Blog, 2021. https://
portswigger.net/research/http2.

[19] Emil Lerner. http2smugl: HTTP2 request
smuggling security testing tool, 2021. https:
//lab.wallarm.com/http2smugl-http2-request-
smuggling-security-testing-tool/.

[20] Nancy G. Leveson. Engineering a Safer World. The
MIT Press, Cambridge, MA, USA, 2011.

[21] Seyed Ali Mirheidari, Sajjad Arshad, Kaan Onarlioglu,
Bruno Crispo, Engin Kirda, and William Robertson.
Cached and Confused: Web Cache Deception in the
Wild. In USENIX Security Symposium, 2020.

[22] Seyed Ali Mirheidari, Matteo Golinelli, Kaan Onarli-
oglu, Engin Kirda, and Bruno Crispo. Web Cache De-
ception Escalates! In USENIX Security Symposium,
2022.

[23] Hoai Viet Nguyen, Luigi Lo Iacono, and Hannes Feder-
rath. Your Cache Has Fallen: Cache-Poisoned Denial-
of-Service Attack. In ACM Conference on Computer
and Communications Security, 2019.

[24] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr.
Finding and Understanding Bugs in C Compilers. In
ACM SIGPLAN Conference on Programming Language
Design and Implementation, 2011.

[25] Andreas Zeller, Rahul Gopinath, Marcel Böhme, Gor-
don Fraser, and Christian Holler. Fuzzing with

Grammars. The Fuzzing Book, 2022. https://
www.fuzzingbook.org/html/Grammars.html.

https://github.com/bahruzjabiyev/frameshifter
https://github.com/bahruzjabiyev/frameshifter
https://portswigger.net/blog/http-desync-attacks-request-smuggling-reborn
https://portswigger.net/blog/http-desync-attacks-request-smuggling-reborn
https://portswigger.net/research/http2
https://portswigger.net/research/http2
https://lab.wallarm.com/http2smugl-http2-request-smuggling-security-testing-tool/
https://lab.wallarm.com/http2smugl-http2-request-smuggling-security-testing-tool/
https://lab.wallarm.com/http2smugl-http2-request-smuggling-security-testing-tool/
https://www.fuzzingbook.org/html/Grammars.html
https://www.fuzzingbook.org/html/Grammars.html

	Introduction
	Background and Related Work
	HTTP/2 Protocol
	HTTP/2-to-HTTP/1 Conversion
	HTTP/1 Chunked Encoding
	Grammar-Based Fuzz Testing
	Related Work

	Scope and Definitions
	Investigation Scope
	Abnormal Conversions

	Frameshifter
	Generating HTTP/2 Frame Sequences
	Mutating HTTP/2 Frame Sequences
	Frame Sequence Mutations
	Frame Content Mutations

	Experiments
	Experimental Setup
	only-seq Experiment
	seq-con Experiment
	Input Coverage

	Findings
	Conversion Anomalies
	Incomplete Content-Length Without Body
	Incomplete Content-Length With Body
	Missing Last Chunk
	Missing Chunk Data Termination
	Missing Chunk Data
	Invalid Header Value
	Invalid Header Termination
	Repeating Header Name
	Repeating Header Value
	Multiple Forwarded Requests

	Input Categories
	Missing END_STREAM
	No Mismatch Check
	HEADERS After END_HEADERS
	Only First DATA
	No Mutation Filter
	No Duplicate Check
	GET Method with DATA
	TRACE with POST

	Causes of Anomalies
	Mode of Operation
	Error Handling
	Insufficient Validation
	Faulty Retrying

	Attacks
	Denial-of-Service
	Request Blackholing
	Query-of-Death
	CPDoS Attack
	Response Queue Poisoning
	HTTP Request Smuggling

	Discussion & Conclusion

