
Untangle: Multi-Layer Web Server Fingerprinting

Cem Topcuoglu∗, Kaan Onarlioglu†∗, Bahruz Jabiyev∗‡, and Engin Kirda∗
Northeastern University∗, Akamai Technologies†, Dartmouth College‡

Abstract—Web server fingerprinting is a common activity in
vulnerability management and security testing, with network
scanners offering the capability for over two decades. All known
fingerprinting techniques are designed for probing a single,
isolated web server. However, the modern Internet is made up
of complex layered architectures, where chains of CDNs, reverse
proxies, and cloud services front origin servers. That renders
existing fingerprinting tools and techniques utterly ineffective.

We present the first methodology that can fingerprint servers
in a multi-layer architecture, by leveraging the HTTP process-
ing discrepancies between layers. This technique is capable of
detecting both the server technologies involved and their correct
ordering. It is theoretically extendable to any number of layers,
any server technology, deployed in any order, but of course
within practical constraints. We then address those practical
considerations and present a concrete implementation of the
scheme in a tool called Untangle, empirically demonstrating
its ability to fingerprint 3-layer architectures with high accuracy.

I. INTRODUCTION

Web server fingerprinting is a standard exercise in security
testing, vulnerability management, and network observability.
Accordingly, popular network scanners have been equipped
with this capability, and both tool makers and academics have
explored the domain for more than two decades (e.g., [8], [18],
[30], [32]). The fingerprinting techniques in literature inspect
HTTP responses for well-known strings and server quirks, with
no breakthrough technique presented since the early 2000s.

This approach is no longer sufficient in the modern In-
ternet, where web applications are typically deployed behind
multiple layers of proxy servers–load balancers, caches, fire-
walls, anomaly detection systems, and similar middle HTTP
processors–that intercept the traffic for performance and secu-
rity services. In particular, Content Delivery Networks (CDNs)
have become critical infrastructure for scalable applications;
according to the data presented by BuiltWith as of June 2023,
64% of the top 10K sites are fronted by a CDN service [3].

Existing fingerprinting techniques are not capable of tack-
ling such complex infrastructures of layered servers. Specifi-
cally, HTTP request probes generated by a fingerprinting tool,
and the resulting response, may be processed and transformed
by any combination of servers on the traffic path. This renders
the established server behavior analysis methods ineffective,

†This work was performed solely at Northeastern University.

even at correctly identifying the client-facing server, let alone
the infrastructure hidden behind it.

This is particularly problematic in the face of the surging
systems-centric web application attacks, including HTTP re-
quest smuggling, web cache poisoning, web cache deception,
and HTTP2 protocol downgrade exploits (e.g., [7], [12], [13],
[15]). These issues fundamentally result from HTTP process-
ing discrepancies between different servers, as opposed to
bugs that can be squished by a single technology vendor. The
research community has built on this work and demonstrated
that automated discovery of novel vulnerabilities impacting
any given server combination is viable–and very effective [9],
[10], [22]–[24]. Thus, it is crucial that security professionals
adapt to this new threat model, and employ technologies that
can accurately identify and test layered servers.

In this work, we propose the first web server fingerprinting
technique that addresses this problem. Our methodology is
rooted in the same observation that enables the aforementioned
discrepancy attacks: The modern web is a patchwork of
HTTP processors, each with distinctive behavior. Given an
understanding of this behavior differential, it may be possible
to devise a strategy where the target infrastructure is probed
with carefully crafted requests, each leaking information about
a particular server layer, until all layers are successfully iden-
tified. The effectiveness of this methodology is correlated with
the prevalence of processing discrepancies between the server
technologies in scope, and our ability to discover them; but
in theory, the process is extendable to any server technology
deployed in any layered configuration.

We implement this methodology in a prototype we call
Untangle, and evaluate it over all practicable 3-layer per-
mutations of 13 popular proxy technologies: Akamai, Cloud-
flare, CloudFront, Fastly, NGINX, Varnish, HAProxy, Apache,
Caddy, Envoy, ATS, Squid, and Tomcat. Untangle leverages
HTTP fuzzing techniques to automatically exercise each server
under investigation and create a behavior repository, and then
uses this information to craft the appropriate requests that
fingerprint each layer. In 756 experiments, Untangle was
able to correctly identify all servers in the first layer, 90.3% of
the second layer, and 50.7% of the final layer, demonstrating
that our novel methodology is viable.

In summary, we make the following contributions:

• We propose the first methodology in literature that can fin-
gerprint multi-layer web servers by leveraging the HTTP
processing discrepancies between them. Our methodology
is generic, extendable to any layering of servers and any
number of layers.

• We implement Untangle, a prototype that leverages
HTTP fuzzing to discover processing discrepancies and
our methodology to perform the fingerprinting.

Network and Distributed System Security (NDSS) Symposium 2024
26 February - 1 March 2024, San Diego, CA, USA
ISBN 1-891562-93-2
https://dx.doi.org/10.14722/ndss.2024.24497
www.ndss-symposium.org

• We evaluate Untangle with 3-layer permutations of
13 popular proxy and server technologies, experimentally
demonstrating that the approach is viable and effective.

Availability. Untangle is open-source and publicly avail-
able on the authors’ websites.

II. BACKGROUND AND RESEARCH OVERVIEW

A. HTTP Proxies and Discrepancy Attacks

Reverse proxies that provide performance and security
services such as caching, load balancing, and traffic filtering
are mainstays of modern web application architecture design.
In particular, due to the proliferation of Content Delivery Net-
works (CDNs) and public cloud services with their massively
distributed Internet overlay networks, and complex infrastruc-
tures that combine all of the aforementioned technologies
together, a client request often traverses multiple HTTP pro-
cessors on its way to its ultimate destination, the origin server.
Note that all reverse proxies are necessarily HTTP servers
themselves, and therefore we will refer to both the middle
processors and the origin technology as servers for brevity.

While this increasing architectural complexity is essential
for scalable and performant web services, it has also led to a
steady stream of security issues over recent years. The attacks
follow a common pattern: When there are two servers on the
traffic path that process the same HTTP message in different
ways, this discrepancy could be abused to harm the Internet
users and/or the application owners. We refer to all issues that
fall under this category as discrepancy attacks.

For instance, Omer Gil coined the term Web Cache De-
ception for an attack that involves exploiting path confusion
vectors between a caching server and an origin, which results
in confidential data leaking into a public cache [7]. Mirheidari
et al. followed up on this work with two large-scale Internet
measurements and new path confusion vectors, demonstrating
that the issue is widespread [22], [23].

Cache poisoning attacks instead exploit processing discrep-
ancies to cache a malicious payload, later to be served to
subsequent clients, with a plethora of techniques documented
online; for instance, see the popular works by James Ket-
tle [12], [14]. In academia, Chen et al. presented poisoning
attacks that result from inconsistent processing of the Host
header in a request [4]. Nguyen et al. explored the issue from a
different angle, and showed that discrepancies could be abused
to cache an error response in place of the requested object, in
effect causing a denial-of-service on the victim site [24].

HTTP Request Smuggling (HRS) is another damaging at-
tack, originally documented in 2005, but now resurging due
to the Internet’s increasing complexity [13], [16], [19]. HRS
abuses discrepancies that lead to confusion around HTTP mes-
sage boundaries, allowing attackers to smuggle hidden requests
through a proxy. This has been shown to facilitate cache
poisoning and a wide array of application specific attacks.
Jabiyev et al. later explored HRS within a scientific framework,
exercising server pairs via differential fuzzing to automatically
discover discrepancies, and showed that HRS vectors are
ubiquitous, affecting every technology under test [10].

Finally, James Kettle tackled HTTP2-to-HTTP1 protocol
conversions performed by virtually all middle processors, lead-
ing to yet another opportunity for eliciting discrepancies [15].
Jabiyev et al. followed up and investigated the same at a larger
scale, again demonstrating that the problem is far-reaching [9].

Initial attempts at mitigating discrepancy attacks involve
loose heuristics, only suitable for specific attack scenarios, and
without scientific evaluation [1], [5]. To date, there is no com-
prehensive defense against discrepancy attacks documented
in literature. Analyzing whether a deployment is exposed to
discrepancy attacks is a complex, open research problem. This
is exacerbated by the fact that there could be more than two
servers involved in traffic delivery, and a discrepancy between
any pair involved could expose a vulnerability.

Consequently, the referenced prior works emphasize that
discrepancy attacks are safety problems resulting from haz-
ardous interactions between technologies that may otherwise
be flawless when analyzed in isolation–individual technol-
ogy vendors cannot address this problem by hardening their
products. System owners must establish an asset management
strategy that accurately tracks all servers involved in their
deployments. Security teams must utilize this information and
check for hazardous server interactions in their testing.

B. Web Server Fingerprinting

Web server fingerprinting is a routine exercise in security
management, often utilized for tasks such as automated asset
discovery in an enterprise network, or for vulnerability tracking
via matching published CVEs to servers. Penetration testers
also utilize fingerprinting for reconnaissance and attack surface
discovery. As such, fingerprinting has long become a standard
capability of popular network and vulnerability scanners such
as Nmap, Nessus, httprint, and httprecon [8], [21], [30], [32].

The techniques utilized by existing fingerprinting tools
follow a common pattern: The tool probes the target with
a set of valid and invalid requests, analyzing the responses
for server characteristics such as a specific ordering of the
response headers or unique errors. Banner grabbing is also
commonplace, in particular, examining the Server response
header. Lee et al. presented one of the earliest works that
documented these techniques in academic literature, and im-
plemented a tool called HMAP that performs lexical, syntactic,
and semantic analyses of HTTP responses [18].

Fingerprinting has a similar utility for miscreants, for
example, making it possible to scan the Internet for exposed
vulnerable servers. The HTTP specification, in particular, RFC
9110, Section 10.2.4 calls out this possibility, and recommends
that ”An origin server SHOULD NOT generate a Server header
field containing needlessly fine-grained detail[...]. Overly long
and detailed Server field values [...] potentially reveal internal
implementation details that might make it (slightly) easier for
attackers to find and exploit known security holes.” [6]. Today,
it is common security practice to remove such headers, or
to place the web server behind a hardened proxy to hamper
fingerprinting [25]. Kar et al. investigated the effectiveness
of server masking against 8 fingerprinting tools run on 4
popular HTTP servers, and confirmed that simple obfuscation
techniques could indeed deter accurate detection [11].

2

C. Fuzzing

Fuzzing is a well-established software testing technique
that involves automatically generating inputs using a grammar
or static corpus, mutating them, and injecting these into a
system to reveal defects. A variation on this idea, differential
fuzzing, aims to find bugs by sending identical inputs to a set
of systems, and observing the discrepancies in their behavior.

Researchers have also applied differential fuzzing to the
security domain. For instance, by using differential fuzzing,
Bernhard et al. [2] discovered JavaScript engine bugs, Reen
and Rossow [29] developed DPIFuzz to detect techniques for
evading deep packet inspection, Petsios et al. [26] developed a
generic differential testing tool NEZHA to find semantic bugs
in a wide set of applications.

Most relevant to our work, recent research has applied dif-
ferential fuzzing to find HTTP parsing discrepancies. Jabiyev
et al. developed an open-source grammar-based fuzzer called
T-Reqs, which they used to search for parsing discrepancies
in HTTP request bodies that could lead to HTTP Request
Smuggling [10]. Shen et al. developed HDiff to search for
discrepancies that cause Host header confusion and cache
poisoning, in addition to smuggling [31].

D. Research Statement

In this work, we draw from the above, seemingly disjointed
research domains to tackle a major limitation of all existing
web server fingerprinting tools and techniques: State-of-the-
art fingerprinting techniques were not designed for the
modern Internet where web applications are deployed
behind multiple layers of HTTP processors, and therefore,
they cannot accurately identify such infrastructure.

Foremost, existing techniques have no concept of layered
servers; they report a single detection result, fundamentally
incapable of capturing the complexity of a multi-layer ar-
chitecture. Interestingly, existing techniques cannot reliably
fingerprint the client-facing server (i.e., the first layer) either.
This is due to all the servers on the traffic path transforming
and rewriting the request in unpredictable ways, rendering the
traditional banner-grabbing and response analysis techniques
that focus on a single server’s characteristics ineffective,
presumably in the same way response obfuscation hinders
detection. We empirically demonstrate this point in Section VI.

This current state puts security practitioners in a difficult
position, crippling the automated discovery, observability, and
testing tasks that have been the backbone of security man-
agement. The challenge has now come to the forefront with
the surging discrepancy attacks targeting layered architectures,
which calls for excellent situational awareness as emphasized
by the referenced works.

In our pursuit to address this problem, we leverage the same
observation that forms the basis of discrepancy attacks, but
turn it on its head. We hypothesize, if web servers commonly
exhibit request processing discrepancies with measurable
outcomes, then it should be possible to craft requests that
elicit distinct responses for different combinations of those
servers. This hypothesis does not imply that there should exist
an all-powerful request that can uniquely identify an arbitrary
multi-layer server architecture, but instead, that we should be

able to find multiple requests that gradually leak information
about the servers and their ordering. Hence, we can iteratively
fingerprint the entire system. In summary, we explore one
overarching research question: Is it possible to detect multi-
layer web servers by utilizing HTTP parsing discrepancies?

In Section III, we first present a generic and extendable
methodology to perform the task for any server technology,
layered in any order, and for any number of layers. At
this stage, we assume a hypothetical, comprehensive behavior
repository that captures all processing discrepancies displayed
by all servers. Of course, this is not feasible in practice, and the
real-world performance of a tool based on our methodology
would be correlated to the accuracy and completeness of the
behavior repository available to us. Hence, in Sections IV
and V, we further describe a concrete implementation of this
methodology and how fuzzing can be employed to automati-
cally build an incomplete, yet viable, behavior repository.

III. MULTI-LAYER FINGERPRINTING METHODOLOGY

Our fingerprinting strategy involves probing each indi-
vidual layer with a specially crafted request and analyzing
the response. Error responses are particularly useful for this
task–they significantly differ between server implementations,
with various status codes, error reasons, non-standard headers,
unique bodies–and therefore this is what we exclusively focus
on. However, in practice we can only directly interact with the
client-facing server of the target. The novel challenge then lies
in correctly determining which layer in the multi-layer target
responds to our probes with the error we observe, so that we
can attribute the result to the correct layer.

For the rest of this discussion, we let:

Servers be the set of all possible server technologies.
Behavior(request, server) → {Error, Pass, Other}, be a

function indicating how a given server behaves when probed
with a request, where Error means the server responds with an
error, and Pass means the server forwards the request without
any modifications. Other covers all cases where requests are
modified before passed forward, or processed by the terminal
origin server with a success response.
Match(response) → {server ∈ Servers, Unknown} be a

function that maps a given error response to a unique server.
Ordered be an ordered list of servers identified with the

correct layer ordering.
Unordered be an unordered set of servers, where the servers

are identified, but the layer order has not been decided.

As a precondition for implementing our methodology, we
assume the availability of a behavior repository that provides
us with the two functions Behavior and Match defined above.
We discuss how such a repository can be automatically gen-
erated for our prototype implementation Untangle in the
later sections; however, for this abstract description of the
methodology, those details are not pertinent.

The fingerprinting process follows three phases:

1) We iteratively fingerprint each layer in order, via probe
requests that guarantee eliciting an error response from
the first undetected layer. In the ideal scenario where the
behavior repository is complete, this concludes the finger-
printing process, where Ordered contains the results.

3

2) Any time during Phase 1, if we cannot find a request
that meets the criterion of eliciting an error response
from the immediate next layer, we relax this condition
and use probes that can trigger an error response from
any subsequent layer. This identifies the servers in the
subsequent layers, but without specifying their order. This
yields the Unordered set.

3) Finally, by combining the findings from Phases 1 and
2, we perform a refinement pass over Unordered to
determine their correct ordering.

We next describe each of these phases in more detail. The
full methodology is available in Algorithm 1.

A. Phase 1: Fingerprint In Order

The basic scheme is based on the following high-level
idea: Given a target multi-layer architecture and a universal
set of N possible server types making that up, if we probe
the target with a request for which all N servers are known
to return an error response, we are guaranteed to observe the
error response returned by layer 1, the client-facing server.
We can then match this error response to a specific server
technology, completing the fingerprinting for the first layer.
Next, we repeat this process, instead picking a probe request
that gets forwarded by the detected layer intact, but returns an
error response from all remaining N −1 servers, guaranteeing
us an error response from layer 2, which we can again match
to a known server technology.

That concludes the multi-layer fingerprinting for a 2-
layer architecture, but the scheme extends to any number of
layers. We depict the general scheme in Algorithm 1 lines 1
through 18, which is a near one-to-one mapping of the above
explanation to our terminology. We start with the Ordered
list empty. For each layer, if a request exists where for all s
in Servers\Ordered, Behavior(request, s) → Error, and
for all s in Ordered, Behavior(request, s) → Pass, we
send this request to the target infrastructure and expect an
error response from the next immediate undetected layer. We
analyze and match this error response to one of the known
server technologies, or an Unknown server if the analysis fails
to find a match. We append the fingerprinted server to Ordered
and repeat until all layers are detected.

Three conditions will terminate the fingerprinting: 1) We
are unable to find a request that meets the conditions for
eliciting an error response from the right set of servers, 2)
we detect that the next server is unknown, or 3) we receive
a success response, not an error. The first two conditions are
tied to the completeness of the behavior repository.

In the ideal case where the behavior repository contains
sufficient discrepancy and identifying error response infor-
mation, Phase 1 successfully completes the fingerprinting.
Ordered contains an accurate list of all layers; Phase 2 and
3 are not necessary. We visually demonstrate an end-to-end 3-
layer instance of how this scenario plays out in Figure 1–this
is a real [Cloudflare, Squid, Tomcat] fingerprinting
example we select from our experiments.

B. Phase 2: Fingerprint Without Order

In many practical scenarios, the behavior repository will
be incomplete, and Phase 1 may fail to complete the task

Tomcat

RequestUntangle
Squid

Untangle

RequestUntangle

Request found

Untangle

Error from Cloudflare

Cloudflare

Untangle

Ordered = [Cloudflare]

Request found

RequestUntangle

Untangle

Ordered = [Cloudflare, Squid, Tomcat]

Detected Layer 1 = Cloudflare, Layer 2 = Squid, and Layer 3 = Tomcat

Request found

TomcatSquid

Response

Cloudflare

Request

Client

TomcatSquidCloudflareOrdered = [Cloudflare, Squid]

Error from Tomcat

TomcatSquidCloudflare

Error from Squid

Finds a request such that all servers return an error

Finds a request such that Cloudflare proxies the request intact,
and the rest of the servers return an error

Finds a request such that Cloudflare and Squid proxy the request intact,
and the rest of the servers return an error

Fig. 1: Fingerprinting [Cloudflare, Squid, Tomcat] in Phase 1.

due to a lack of probe requests that meet our requirements.
This leaves us with a number of layers correctly identified in
Ordered, and Phase 2 aims to fingerprint the servers in the
remaining layers. Specifically, we now relax the requirements
for selecting probes, with the trade-off being that we can only
detect the server technologies present, but not their ordering.

We depict Phase 2 in Algorithm 1, lines 20 through 31.
We begin with the Ordered list built in Phase 1, and the
Unordered set is empty. We probe the target with all requests
where i) Behavior(request, s) ∈ {Error, Pass} for all s in
Servers\Ordered, and ii) Behavior(request, s) → Pass
for all s in Ordered. This triggers error responses from
the subsequent unindentified servers, without any information
regarding their layer placement, which we can then match to
a known server technology and add to the Unordered set.
Note that it is again possible that our response analysis fails
to find a match, in which case we add the symbol Unknown
to the set. Unknown does not have to be a single server; it
represents any number of servers that we fail to fingerprint.

Figure 2 demonstrates how Phases 1 and 2 interact through
a concrete case study drawn from our experiments, involving
the layers [CloudFront, HAProxy, Apache]. Steps 1 and 2
demonstrate a run of Phase 1, leading to the successful
detection of layer 1, CloudFront. However, in Step 3, we
fail to find the necessary probe, i.e., a request that only
CloudFront proxies intact, but other servers respond to with
an error. Hence, we enter Phase 2 with Step 4. For brevity,
Step 5 depicts the entire process of probing the target with
all qualifying requests. We receive a set of error and success
responses, and we match the error responses to HAProxy and
Apache. As a result, we set Unordered to HAProxy and
Apache, and conclude Phase 2.

4

Apache

Request
Untangle

HAProxy

Step 2:

Step 3: Untangle

UntangleStep 4:

Step 1:

Request found

Untangle

Error from CloudFront

CloudFront

UntangleStep 5: Error from HAProxy
Error from Apache

Success response
Request list

HAProxyCloudFront Apache

Ordered = [CloudFront]

Request list

Unordered = {HAProxy, Apache}

UntangleStep 6:

Request list

UntangleStep 7:
Error from HAProxy

HAProxy Apache

Error from HAProxy

CloudFront

Untangle

Ordered = [CloudFront, HAProxy, Apache]

Step 8:

Request list

Untangle could not find such request

ApacheHAProxy

Response

CloudFront

Request

Client

Detected Layer 1 = CloudFront, Layer 2 = HAProxy, and Layer 3 = Apache

Phase 1

Phase 2

Phase 3

Finds a request such that CloudFront proxies the request intact, and the rest of the servers return an error

Finds a request such that all servers return an error

Finds all requests such that CloudFront proxies the request intact, and the rest of the servers either proxy the request intact or return an error

Finds all requests such that CloudFront proxies the request intact, and HAProxy and Apache return an error

Fig. 2: Fingerprinting case study with [CloudFront, HAProxy, Apache] where Phase 1 of the methodology cannot complete the task due to an
incomplete behavior repository.

C. Phase 3: Refining The Ordering

In this final phase, we aim to determine the ordering of
the servers that we found in the previous step, i.e., move the
entries in Unordered to Ordered according to their correct
placement.

We show the process in Algorithm 1, lines 33 to 65.
Intuitively, we probe the target with all requests where i)
Behavior(requests, s) → Pass for all s in Ordered, and ii)
Behavior(request, s) → Error for all s in Unordered. This
guarantees an error response from the server that is positioned
closest to the client among Unordered, which we can analyze
and match to a known server technology as usual. We move
the fingerprinted server to Ordered and repeat the process.

Three conditions terminate this final phase: 1) Unordered
contains Unknown. Since we do not know how the unknown
server behaves, we cannot enter Phase 3 at all. 2) We are unable
to find a probe request that meets the necessary conditions. 3)
There is only one server in Unordered; the order is implicit
and there is no need to continue Phase 3. We move this server
to the end of Ordered and stop.

In the former two conditions, we return Ordered and
Unordered separately as the final result. We call this a partial
fingerprint, where, for an N -layer target, we are able to
detect both the technology and order for the first m layers;
the remaining N − m layers are still correctly identified

technologies, but without a specific order. While this is not
the ideal outcome, it is still useful and actionable information
that no prior fingerprinting technique can provide.

The latter, third halting condition represents the best case
where we are able to correctly identify both the server technol-
ogy and ordering for all N layers. We call this a full fingerprint.

Note that both the full and partial fingerprints above can
still be incorrect if the methodology returns wrong results due
to a bad behavior repository. We will explore these cases when
evaluating our implementation later in the paper.

Revisiting the case study in Figure 2, Steps 6, 7, and
8 demonstrate the application of Phase 3. Previously, we
found that HAProxy and Apache exist, however, we could not
decide on their ordering. We now probe the target with all
requests that CloudFront proxies, but HAProxy and Apache
both respond to with an error. We receive an error response
that, upon analysis, matches HAProxy. In other words, we
now know that HAProxy is the server that comes after Cloud-
Front. We could then repeat the process, however, since we
only have Apache left in the Unordered set, we meet our
termination condition, and append Apache to the Ordered
list. Ultimately, we correctly identify that CloudFront stands
in layer 1, HAProxy in layer 2, and Apache in layer 3.

So far, we have demonstrated that it is possible to fin-
gerprint multi-layer web servers by using a generic and ex-

5

Algorithm 1 Multi-Layer Fingerprinting Methodology
1: /* Phase 1 Start */
2: Ordered = [], Unordered = ∅
3: while ∃req |
4: ∀s ∈ (Servers \ Ordered), Behavior(req, s) → Error∧
5: ∀s ∈ Ordered,Behavior(req, s) → Pass
6: do
7: resp = send(req, target)
8: if isError(resp) then
9: detected = Match(req)

10: if detected = Unknown then
11: return Ordered
12: else
13: Ordered.append(detected)
14: end if
15: else
16: return Ordered
17: end if
18: end while
19:
20: /* Phase 2 Start */
21: for each req ∈ {requests |
22: ∀s ∈ Servers \ Ordered, (Behavior(req, s) → Error∨
23: Behavior(req, s) → Pass)∧
24: ∀s ∈ Ordered,Behavior(req, s) → Pass}
25: do
26: resp = send(req, target)
27: if isError(resp) then
28: detected = match(resp)
29: Unordered.add(detected)
30: end if
31: end for
32:
33: /* Phase 3 Start */
34: if Unknown ∈ Unordered then
35: return Ordered, Unordered
36: else
37: while |Unordered| > 1 do
38: detected list = []
39: for each req ∈ {requests |
40: ∀s ∈ Ordered,Behavior(req, s) = Pass∧
41: ∀s ∈ Unordered,Behavior(req, s) = Error}
42: do
43: resp = send(req, target)
44: if isError(resp) then
45: detected = match(resp)
46: detected list.append(detected)
47: end if
48: end for
49: if |detected list| > 0 then
50: detected = mode(detected list)
51: if detected = Unknown then
52: return Ordered, Unordered
53: else
54: Unordered = Unordered \ detected
55: Ordered.append(mode(detected list))
56: end if
57: else
58: return Ordered, Unordered
59: end if
60: end while
61: if |Unordered| = 1 then
62: Ordered.append(Unordered)
63: end if
64: end if
65: return Ordered

tendable methodology, employing requests that leverage the
discrepancies among servers, and error responses that uniquely
identify servers. In the rest of the paper, we fill in the
blanks regarding implementation details, limitations, and other
practical considerations.

IV. BUILDING A BEHAVIOR REPOSITORY VIA FUZZING

In this section we venture into the practical considerations
for implementing our fingerprinting methodology in a proto-
type called Untangle. So far we have assumed the existence

TABLE I: Server technologies in scope for Untangle.

Server Name Version

Akamai N/A
Cloudflare N/A
CloudFront N/A
Fastly N/A

Apache httpd 2.4.54
Apache Traffic Server (ATS) 9.1.2
Caddy 2.5.1
Envoy 1.21.1
HAProxy 2.6.0
NGINX 1.22.0
Squid 5.4
Tomcat 10.0.22
Varnish 6.0.10

Input
grammar

 Mutated HTTP
requests

Generate and mutate
requests

Collected
responses

Send HTTP requests
Servers

Collect
HTTP responses

Feed the tool Process responses
Behavior
repository

Untangle

Fig. 3: Fuzzer setup overview.

of a behavior repository that captures two critical pieces of
information: 1) What requests result in the Error and Pass
behaviors for each server in scope, and 2) what distinct error
responses each server returns. In our prototype, we leverage
differential fuzzing to automatically build this repository.

We use the differential HTTP fuzzer T-Reqs by Jabiyev et
al. as the basis for our own fuzzer, extending it to suit our
needs [10]. We emphasize that we do not recycle any research
results from Jabiyev et al.’s work, or claim contributions to the
fuzzing domain–we merely utilize T-Reqs as an open-source
fuzzing framework. We then select 13 popular technologies, 4
CDNs and 9 standalone servers, and exercise them in our lab to
reveal processing discrepancies and collect the error responses
we need. See Table I for a full list of servers in scope for our
work, and Figure 3 for an overview of the experiment setup.

Note that this implies a minor deviation from how we
described our methodology. Untangle does not need to
dynamically generate and test probe requests for the correct
behavior (i.e., via the Behavior(request, server) function).
Instead, all probe requests of interest with their corresponding
behaviors for each server are pre-computed as the output of our
fuzzing experiment. Untangle simply searches the behavior
repository for a probe suitable for the circumstances.

A. Generating And Mutating HTTP Requests

T-Reqs is a grammar-based fuzzer that generates valid
HTTP requests and then applies character mutations on it. The
grammar also includes a symbol pool of non-standard headers
that the fuzzer can insert into the generated request.

To mutate HTTP requests, T-Reqs employs character inser-
tion, removal, and substitution, applied at random. We define
a pool of 74 random ASCII characters for this purpose. The

6

METHOD _URI_ HTTP/1.1 # mutations
Host: _HOST_
Connection: close
Content-Length: 8 | 0

\r\ndata\r\n\r\n | \r\n

Listing 1: Request line mutations experiment.

fuzzer also allows us to define an HTTP symbol pool where
we declare the request components to which we wish to apply
the mutations. T-Reqs then randomly selects from the pool of
symbols and characters, mutating the request accordingly.

We design three fuzzing experiments focusing on the main
parts of an HTTP request: the request line, header, and body.
We modify the grammar and the mutation capabilities of T-
Reqs, and run the experiments as follows.

1) Request Line Mutations: This experiment targets re-
quest line components by selecting from the pool of method
name, URI, and protocol symbols and applying character
mutations on them. During our experiments, we configure the
fuzzer to apply up to two character mutations. To further
increase the uniqueness of our requests, we diversify the
Content-Length header value and request body.

Listing 1 presents the generic HTTP request that we use
in this experiment. The color blue represents the parts to
which we applied character mutations. Also, parts that we
randomly choose from the grammar are depicted with the
variable name that starts and ends with the ‘ ’ character (e.g.,

METHOD). For example, Listing 1 shows that we select
the method name from a pool of method name values and
make character mutations on it. The color brown depicts the
particular values that we use in the requests. For instance, we
only use ‘8’ or ‘0’ for the Content-Length header value. In
total, we use 40 method names that include both common and
uncommon ones and 8 different request URIs.

2) Header Mutations: Here, we randomly insert headers
into the HTTP request we generate, using a pool of 66
standard and 1142 non-standard header names, compiled from
header list of PortSwigger’s Burp Suite extension param-
miner [28]. For the non-standard headers, we use ‘test’ and
‘123’ as the values. Again, using the character pool, we make
character mutations on these headers. During our experiments,
we insert one to two headers, with zero to two character
mutations. As in the previous experiment, we also diversify
the Content-Length header value and body. Finally, we
randomly generate the method name from the pool of 40
method names. Listing 2 presents a summary of the requests
we create in this experiment.

3) Body Mutations: Unlike the previous experiments, here
we set the method to ‘POST’ and the request URI to ‘/’. We
focus on the headers that change the body parsing behavior
(i.e., entity size headers), such as Content-Length and
Transfer-Encoding, and apply their valid and invalid
combinations. We also utilize the Trailer header with the
following values: ‘Transfer-Encoding’, ‘Content-Length’, and
a non-standard header name, ‘Foo’. We use both chunked and
regular bodies. Listing 3 demonstrates the requests we generate

METHOD / HTTP/1.1
Host: _HOST_
Connection: close
Content-Length: 8 | 0
STANDARD HEADERS # mutations
NON-STANDARD HEADERS # mutations

'data' | ''

Listing 2: Header mutations experiment.

POST./ HTTP/1.1
Host: _HOST_
Connection: close
ENTITY SIZE HEADERS # mutations
TRAILER # mutations

BODY # mutations

Listing 3: Body mutations experiment.

for this experiment.

All in all, we generated 2,029,592 unique requests in the
request line mutation experiment, 1,753,955 in the header
mutation experiment, and 497,292 in the body mutation ex-
periment, for a total of 4,280,839.

B. Discovering Discrepancies And Errors

We set up the 13 servers in scope for our experiments
in our lab environment, and exercise them with the requests
generated by T-Reqs as above. Since we are not only interested
in collecting their responses but also the forwarded requests,
we set up each server in proxy mode, in front of an origin that
acts as a feedback server. This feedback server replies back
to us with the requests proxied by the tested server. The sole
exception to this experiment mode is Tomcat, which does not
have a proxy mode and therefore cannot proxy requests.

Upon collecting the responses and requests proxied by the
13 servers, we analyze each and categorize them into three
behavior buckets: 1) The server returns an error response,
indicating that there is a problem in processing the request.
This bucket corresponds to the Error behavior previously
defined in our fingerprinting methodology. 2) The request
is successfully processed and the server proxies it without
making any changes to the mutated sections. This is our Pass
behavior. Our focus on discrepancy triggering requests that
only get forwarded by the proxies intact, with the mutations
preserved, is a necessary design choice. It serves to avoid
unexpected interactions due to request transformations between
layers during the fingerprinting process. 3) All other behaviors
are irrelevant for fingerprinting, and therefore we group them
under the Other category. These include requests proxied
without preserving the applied mutations, request timeouts,
HTTP 0.9 responses without headers but only a body, and
zero-byte responses.

The behavior repository is now ready. For every request,
we have the corresponding behaviors for all 13 servers. We
also have each server’s respective error responses.

7

TABLE II: Unique behaviors where servers in each cell proxy the request (i.e., Pass, or P), and servers not shown return an error (i.e.,
Error, E). The numbers represent the number of requests that trigger the corresponding unique behavior.

Akamai: �, Cloudflare: □, CloudFront: ⋆, Fastly: �, Apache: (, ATS: $, Caddy: �, Envoy: 6, HAProxy: #, NGINX: ○, Squid: ", Varnish: ◎
P=0, E=13 P=1, E=12 P=2, E=11 P=3, E=10 P=4, E=9 P=5, E=8 P=6, E=7 P=7, E=6 P=8, E=5
∅ : 1803699 ◎: 24833 #◎: 45 �□⋆: 957 $#○": 33 �6#"◎: 1 �$6#"◎: 5 �($�#"◎: 12893 �($�#6"◎: 374

#: 2099 #": 381 �#◎: 632 □$#○: 324 �($�◎: 2 □�$#"◎: 12 �(�6#"◎: 217 �□�$6#"◎: 3
": 115 $○: 4 □⋆#: 24 �□⋆": 135 □$#○": 22003 □�6#"◎: 3 □�$6#"◎: 30
$: 14449 □": 1 □⋆": 62 �□⋆#: 14 �$#"◎: 3 ��$6#"◎: 1
�: 17 □�$: 2
□: 11 □$○: 2866
�: 1 $#": 1177

$#○: 2

Akamai Cflare CFront Fastly Apache ATS Caddy Envoy HAProxy NGINX Squid Varnish
Pass

Ak
am

ai
Cf

la
re

CF
ro

nt
Fa

st
ly

Ap
ac

he
AT

S
Ca

dd
y

En
vo

y
HA

Pr
ox

y
NG

IN
X

Sq
ui

d
To

m
ca

t
Va

rn
ish

Er
ro

r

0 1077129 6270 102653810739661392503 241589 317629 552173 103885010863021232046

4123 0 20 71202 74135 81720 45889 13078 66964 950 79770 210958

23800 980346 0 958449 10024831290989 221580 283145 517174 947870 982846 1139024

13121 147141 4031 0 9994 372027 15577 0 48295 125259 113859 68562

12833 157111 4323 9668 0 372333 27365 54 58849 125629 105401 140051

12490 60743 5234 42330 44714 0 26705 18712 44583 30564 50051 145228

12631 142443 4031 64 0 357296 0 54 37658 114022 104542 89069

19215 473842 4127 370606 386231 752659 118841 0 238462 424291 446784 510401

13292 64294 3767 30218 31524 268452 6485 11 0 32452 4968 86637

19227 40016 3876 72526 75386 234674 53619 12513 66793 0 85349 210005

19593 65967 3508 47204 49064 284027 27774 6276 31744 50589 0 134650

14341 1084385 8384 102819510755771393829 228133 315289 552376 104005810782001204369

22009 185492 4293 34640 35209 404593 18391 66 35809 148459 107307 0

0

20

40

60

80

100

Fig. 4: Number of requests that trigger discrepancies for server pairs.

C. Viability Of Fuzzing To Build The Behavior Repository

Building the behavior repository via fuzzing is an im-
plementation choice, and other implementations may choose
different approaches. In our exploratory study, we considered
two other possibilities: 1) Static analyses of server source
code, and 2) manually guided dynamic analyses more focused
than fuzzing. The former static analyses are inefficient or
intractable for complex server code, but more importantly, they
are impossible to carry out for proprietary CDN technologies
from our external vantage point. The latter class of dynamic
analyses are more promising. However, the easy automation
and generally higher code coverage properties of fuzzing are
especially desirable for our use case. That is because we
anticipate a need to periodically repeat the fuzzing process
and update the behavior repository in order to track server
updates, which may change the servers’ HTTP processing
behavior. By settling on fuzzing, we address the problem of

keeping Untangle’s fingerprinting capabilities up-to-date in
an entirely automated manner.

An important question remains: Does fuzzing discover a
sufficient number of discrepancies to build a practical finger-
printing tool? We present statistics below demonstrating that
fuzzing is not only viable, but also effective at finding a wide
variety of discrepancies.

Figure 4 depicts the number of requests that trigger pair-
wise discrepancies. The X-axis shows the servers that forward
requests intact, and the Y-axis shows the servers that return
an error. Recall that Tomcat does not have a proxy mode, and
therefore it does not appear on the X-axis. In total, among the
144 pairings possible, we found at least 11 requests (and usu-
ally drastically more) that trigger HTTP parsing discrepancies
in 142 pairs. For only two pairs, where Envoy forwarded as
is and Fastly returned an error response, or where Apache
forwarded as is and Caddy returned an error response, we
could not find any requests that triggered discrepancies.

These pairwise results look promising; however, to under-
stand the full extent of our findings, we explore the unique
behaviors as well. Table II lists the unique behaviors we
observed for all server combinations. We represent each server
with a distinct shape and color. Each cell represents a unique
behavior where the servers in that cell proxy the request (i.e.,
Pass, or P), and the servers not shown return an error (i.e.,
Error, or E). The number in each cell represents the number
of requests that trigger the corresponding unique behavior.
Columns represent the number of servers that show Pass
behavior for the unique behaviors under that column. Tomcat
is again not present in this table since it cannot operate as
a proxy, i.e., it only exists among the servers that show the
Error behavior. In total, we have 37 unique behaviors. To
demonstrate how to read the table, one of the unique behaviors
is depicted in the first row of the second column: only Varnish
(i.e., ◎) proxies the request, and the remaining 12 servers
respond with an error. We found 24833 requests that led to
this behavior.

To assess the viability of rebuilding the behavior repository
in the face of upstream server updates, we reviewed the
release cycles for all technologies in our work, as advertised
by the developers and evidenced by their release dates. This
analysis excludes the CDNs, which have no publicly dis-
cernible releases. We also ignore one-off hotfix patches and
consider regular releases only. Our findings show that the most
frequently updated server receives new versions on a monthly
basis. As a point of reference, building the behavior repository

8

as described in this section, using a single commodity machine
and no parallelization, took us below 6 days. We conclude that
the process can be feasibly automated at a reasonable cadence
to maintain an up-to-date fingerprinting tool.

These results demonstrate that fuzzing is able to provide us
with a rich (albeit imperfect) behavior repository that makes it
possible to capture the discrepancies between a great majority
of the server pairs, with a plethora of request variations that
make the approach robust against future server changes, all the
while adopting a fully automated testing approach.

V. ERROR-TO-SERVER MATCHING

We have one final implementation detail to complete
Untangle: Determining an analysis strategy to match error
responses to servers. We prefer not to solely rely on rigid
signatures (e.g., checking for Server header values) for this
task to make our detection robust against common server
cloaking practices, though using such checks on top of other
flexible heuristics to boost detection performance is acceptable.

Unlike most existing tools and their signature databases, we
have access to specific server responses for each one of the
HTTP requests utilized by Untangle. We take advantage
of this visibility, and design a simple but effective response
similarity metric. Specifically, we transform response messages
into a set of tokens, and compute a Jaccard similarity score by
analyzing the tokens shared between probe responses observed
during fingerprinting and the known responses recorded in the
behavior repository. Consequently, we match the response to
the most similar entry in the repository, and label the probed
layer with the corresponding server technology.

What response components should be considered for this
similarity comparison is an implementation choice. We experi-
ment with two options: 1) Computing similarity over the entire
response message, and 2) computing three separate similarities
over the full response, error code, body data, and combining
them for the final score. The latter option is motivated by our
exploratory work which shows that higher weighing of error
codes and response bodies yields more accurate matches, due
to the discrepancies affecting these components the most. We
evaluate both approaches in Section VI.

We supplement this score by checking for a small number
of fixed strings, once again motivated by our observations
during an exploratory study. These are the following five CDN
response headers: CF-Cache-Status and CF-RAY for
Cloudflare, X-Amz-Cf-Pop and X-Amz-Cf-Id for Cloud-
front, and X-Served-By for Fastly. We avoid relying on the
commonly removed Server header. Again, we evaluate the
impact of this addition in Section VI.

Lastly, we can perform the similarity-based server match-
ing in two ways. One approach selects the best match; this sim-
plifies the methodology by eliminating an Unknown match, as
there will always be a match even when the similarity score is
low. However, in any real-life use of Untangle, we anticipate
the possibility of interacting with a server technology that our
behavior repository has no history of, making an Unknown
match necessary to flag a partial or unsuccessful fingerprinting.
Therefore, the second approach uses a similarity threshold for
error-to-server matching. In the absence of a score above the

threshold, the probed server will be labeled Unknown. We
experiment with both approaches in Section VI as well.

VI. EVALUATION

We evaluate Untangle in a test setup that replicates a
real-life multi-layer topology under the following conditions:

• The number of layers is set to three.
• CDNs are always placed before stand-alone servers to

capture realistic deployments.
• The last layer is never a CDN, since they often cannot

act as origin servers.
• Multiple instances of the same server cannot be present.
• When Tomcat is used, it is always in the last layer,

because Tomcat does not have a proxy mode.

A. Fingerprinting Accuracy

Our core experiment set aims to measure how well
Untangle performs in terms of producing accurate finger-
prints, while incrementally enabling methodology phases and
implementation refinements to observe how they influence the
results. Our test driver dynamically deploys all permutations
of the 13 servers in scope following the aforementioned con-
straints, and tests them using Untangle, resulting in a total
of 756 unique fingerprinting runs per experiment. Untangle
has no knowledge of the infrastructure beyond a domain name
resolving to Layer 1, mimicking an end-to-end use case.

There are three main outcomes for each test:

• A full fingerprint, meaning that all 3 layers are correctly
identified, both server type and order. This is the ideal
outcome.

• A partial fingerprint, This is a broad category that
captures all cases where we correctly identify the name
and order of the first n layers. The remaining 3−n layers
are either identified without specifying order, or flagged
as Unknown. Although incomplete, this is still useful
and actionable information.

• Misclassification, indicating at least one layer was la-
beled as an incorrect server, regardless of how many other
layers were correctly detected. This is our failure case.

We conduct four experiments, each over all 756 server
permutations, described next. In Table III we summarize all
results, providing a detailed breakdown of partial fingerprinting
outcomes. Table IV presents a different view of the same,
breaking down the numbers with respect to the layers correctly
identified–a correct detection for Layer n implies a correct
detection for all layers < n.

In the following, cases where Untangle cannot produce a
full fingerprint are due to the behavior repository not contain-
ing a suitable probe request for the tested server permutation.
This could either be due to our fuzzing experiment not achiev-
ing the desired coverage to identify such probes, or otherwise
there may not exist an appropriate discrepancy that could
fingerprint that particular permutation. Misclassifications, on
the other hand, result from the shortcomings of the response
similarity checks we use; we discuss the specifics in each
experiment below.

9

TABLE III: Summary results of fingerprinting accuracy experiments.

Exp. A Exp. B Exp. C Exp. D

Full fingerprint

Layer 1, 2, and 3 38 (5.0%) 43 (5.7%) 390 (51.6%) 383 (50.7%)

Partial fingerprint

Layer 1 only 330 (43.7%) 329 (43.6%) 30 (4.0%) 32 (4.2%)
Layer 1 and 2 339 (44.8%) 377 (49.8%) 293 (38.8%) 300 (39.7%)
Layer 1 and 3 11 (1.5%) 7 (0.9%) 40 (5.2%) 38 (5.0%)

Partial subtotal 680 (90.0%) 713 (94.3%) 363 (48.0%) 370 (48.9%)

Error

Misclassification 38 (5.0%) 0 (0.0%) 3 (0.4%) 3 (0.4%)

Total runs 756 756 756 756

TABLE IV: Fingerprinting accuracy results broken down by layers.

Experiment Layer 1 Layer 2 Layer 3

Exp. A 756 (100.0%) 382 (50.5%) 38 (5.0%)
Exp. B 756 (100.0%) 420 (55.5%) 43 (5.7%)
Exp. C 756 (100.0%) 683 (90.3%) 390 (51.6%)
Exp. D 756 (100.0%) 683 (90.3%) 383 (50.7%)

Nmap 450 (59.5%) 0 (0.00%) 0 (0.00%)

Experiment A: Phase 1 Only. We start with the base
case, configuring Untangle to only use Phase 1 of the
methodology without the refinement steps. The error-to-server
matching is performed following the basic scheme where the
similarity score is computed over the entire response body, and
there are no checks for static headers. There is also no similar-
ity threshold defined; we pick the highest similarity response
match, and an Unknown classification is not possible.

This restricted configuration can still detect Layer 1 in all
runs, but the accuracy drops steeply with the deeper layers. In
particular, we achieve a full fingerprint only in 38 (5.0%) cases,
with 680 (90.0%) runs stopping after a partial fingerprint. We
have a further 38 (5.0%) misclassifications. Manual analysis
shows that, although all misclassified responses originated
from the expected layers, the similarity metric falls short of
classifying them to the right server type. This is due to our
missing the subtle differences in the responses; for example,
we observed that some misclassified responses differ only by
their response bodies, but not the headers.

Experiment B: Phase 1 With Similarity Score Refine-
ments. In light of the findings above, we now enable the
alternative similarity comparison approach that combines three
separate scores calculated over different response components,
and static CDN header checks, both described in Section V.
This experiment still runs Phase 1 only.

Our positive detections only improve slightly, but impor-
tantly, all misclassifications from the previous experiment are
now eliminated. This demonstrates that the similarity score
refinements we apply achieve the desired effect, and we
incorporate them in all future experiments.

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Similarity Score

0

1000

2000

3000

4000

Nu
m

be
r o

f t
ot

al
 re

qu
es

ts

1.
82

Fig. 5: Similarity score with respect to the accumulated number of
requests. The vertical line represents the threshold.

Experiment C: All Phases. We now employ the complete
methodology with all three phases, on top of the configuration
we used in Experiment B.

The results show that introducing Phases 2 and 3 makes
the detections in Layer 2 and Layer 3 surge to 683 (90.3%)
and 390 (51.5%) respectively. In other words, we achieve a
drastically better full fingerprint rate of 51.5%. The complete
methodology also introduces 3 misclassifications; we find all
the server names, but mix up Layer 2 and Layer 3’s orders.

Despite the small error rate, this experiment empirically
shows that the full methodology is effective, and the refinement
phases significantly contribute to the overall scheme.

Experiment D: All Phases With Similarity Threshold.
In the last experiment, we show that Untangle can achieve
good accuracy. However, we still have one missing piece
necessary for practical use in environments where there may
be servers whose behavior is not captured in our repository.
Hence, we need to introduce a similarity score threshold to be
used during the error-to-server matching step, and enable the
Unknown category as described in Section V.

We empirically compute a plausible threshold as follows.
We plot the maximum similarity scores observed during Exper-
iment C; Figure 5 depicts the results. The X-axis represents
the maximum similarity score x for a specific request, and
the Y-axis represents the total number of requests that have
a similarity score of x or lower. We observe that the number
of requests with similarity scores higher than 1.82 increases
drastically, and therefore select 1.82 as our threshold similarity
score. That is, if a response has a maximum similarity score
of 1.82 or lower, we classify it as Unknown.

We then run a final experiment with the similarity thresh-
old check enabled, on top of the configuration we used in
Experiment C. The results show that there is no change in
Layer 1 and Layer 2 detections compared to Experiment C. In
Layer 3, there is a small decrease, bringing our full fingerprint
accuracy down to 383 (50.7%). This is expected as the
selected threshold necessarily covered some of the successfully
matched cases in our data set, but this minor degradation is an
acceptable trade-off for enabling Unknown classifications. In
summary, Experiment D represents Untangle’s canonical
configuration and performance.

10

HTTP/1.1.400 Bad Request
Connection: close
Content-Length: 11
content-type: text/plain; charset=utf-8
x-served-by: cache-bos4666

Bad Request

Listing 4: Misclassified HTTP response by Fastly.

HTTP/1.1.400 Bad Request
content-length: 11
content-type: text/plain
date: Fri, 30 Dec 2022 08:29:09 GMT
server: envoy
connection: close

Bad Request

Listing 5: Misclassified HTTP response by Envoy Proxy.

B. Accuracy With Unknown Servers

Now that we have the complete methodology fine-tuned
with the empirically determined configuration parameters, we
perform an additional set of experiments where we simulate
how Untangle would perform in the presence of an unknown
server, completely missing from the behavior repository.

We perform 13 experiments. In each, we make Untangle
oblivious to one of 13 servers by removing all entries corre-
sponding to that server from the behavior repository, crippling
our ability to compute accurate similarity scores for that
server’s responses. We only permute the cases that include the
removed server. As a result, we expect to identify the removed
servers as unknown. Overall, for the experiments in which we
remove the CDNs, we test 118 permutations. For Tomcat, we
test 100 permutations, and for the rest, 212 permutations.

In the experiments where we remove Akamai, CloudFront,
Apache, ATS, HAProxy, NGINX, Squid, Varnish, and Tomcat,
we had no misclassifications. That is, if Untangle detects the
layer, it correctly classifies it as Unknown.

When we remove Envoy, we erroneously match it to Caddy
in 58 cases. When we remove Caddy, we erroneously match
it to Envoy in 9 cases, and to both Envoy and Unknown in 4
cases. When we remove Cloudflare, we erroneously match it
to NGINX in 8 cases, and to both NGINX and Unknown in
8 cases. When we remove Fastly, we erroneously match it to
Envoy in 90 cases, and to Varnish in 8 cases.

As a misclassification example, see how Fastly and Envoy
respond to an identical request in Listings 4 and 5. These two
responses have a matching body and request line. We manually
examine the remaining cases and observe that, likewise, they
are all highly similar, which leads to the misclassification.

All together, Untangle made 185 misclassifications in
2268 total permutations. This is a reasonable error rate, and
an inherent limitation of all fingerprinting techniques working
with unrecognized targets. Further fine-tuning the similarity
score and threshold is a possible way to minimize the mis-
classifications that we do not pursue in this work.

TABLE V: Nmap fingerprinting results against 3-layer servers.

Permutations

Layer 1 detected 450 (59.6%)
Layer 2 detected 45 (5.9%)
Layer 3 detected 34 (4.5%)
Misclassification 73 (9.6%)
No detection 154 (20.4%)

Total 756 (100.0%)

C. Untangle Versus Nmap

We compare Untangle with the popular network scan-
ning tool Nmap’s fingerprinting capabilities [8]. Nmap has no
concept of layered servers, and makes no claims of being able
to fingerprint such architectures. Our goal in this experiment
is two-fold: First, to evaluate how Untangle’s Layer 1
detection fares against Nmap, and next, to understand whether
Nmap fails to detect a server in a multi-layer architecture when
it can successfully identify the same server in isolation.

We first test Nmap against all 13 servers in isolation,
where it is able to identify 9. These are Akamai, CloudFront,
Cloudflare, Apache, ATS, Caddy, NGINX, Squid, and Tomcat.
Nmap could not correctly identify Envoy, HAProxy, or Varnish
even in isolation. Also, it misclassifies Fastly as Varnish–this
is not surprising as Fastly is known to use a version of Varnish
on their edge servers [20]. In contrast, Untangle detects all
servers in Layer 1 in all experiments, with no misclassification.
Hence we can confidently say Untangle outperforms Nmap
for single server fingerprinting.

Next, we test Nmap in the same 3-layer setup with 756
server permutations we used for our core experiments. We
present the results obtained with Nmap on the last row of
Table IV for easy comparison to Untangle. The results show
that, Nmap correctly detects the Layer 1 server in only 450
permutations out of 756.

Table V presents more details on this experiment, breaking
down the cases where Nmap falls short. In 45 and 34 tests,
Nmap returns the correct results that match Layer 2 and Layer
3 respectively. We are not able to determine with certainty
whether these are due to Layer 2 and 3 server indicators
masking the Layer 1 signals that Nmap checks for, or some
other coincidental interaction between the layers. Nmap also
reports an entirely incorrect detection for 73 permutations,
matching none of the layers, and it could not detect anything
for another 154 permutations.

Manual analysis of the results confirms that in some cases,
Nmap was indeed confused due to the layering. For example,
for the [Squid, Caddy, Tomcat] permutation, Nmap reports
Caddy as the detected server, while normally, it is able to
detect Squid in isolation. In another case, for [Apache, Squid,
ATS], Nmap could not detect any servers, whereas it is able
to fingerprint Apache in isolation.

These results demonstrate that a well-established tool like
Nmap and the traditional fingerprinting techniques it is based
on do not always function correctly against the complexity of
multi-layer infrastructures. In the end, Untangle is able to
perform better than Nmap in fingerprinting single servers, and
it is the only option for fingerprinting multi-layer servers.

11

D. Testing In the Wild

Finally, we test Untangle in the wild with real web
deployments. We stress that the goal of this experiment is not
to present a scientific measurement study of server incidence.
Unfortunately, without access to ground truth describing pro-
prietary infrastructures, validating Untangle’s output is not
viable. Therefore, we present the raw results of this experiment
as is, and instead focus on analyzing the practical implications
of running Untangle on production infrastructures, which
we may have missed in our previous lab evaluation.

We seed our experiment with the Tranco top 10K domains1

generated on 22 October 2023 [17]. An immediate practical
consideration with our methodology is that, we require inter-
actions with an ordinary server that responds with a variety
of 200, 4xx, and 5xx responses to guide our fingerprinting
process. However, we observe in the wild that some domains
and their root URLs lead to load balancers that unconditionally
issue 3xx redirects (e.g., pointing to the ”www” subdomain,
or different paths based on geo-location). Therefore, we pre-
process the list by visiting each domain and following all
redirects until we get a 200 response, remove the duplicates
the process may yield, and utilize these as our fingerprinting
targets. We also eliminate targets that do not go to a functional
server during this step, including DNS errors, server errors,
timeouts, and 403 responses. This results in a final list of
7528 sites. The 2472 sites we eliminate are higher than the
non-functional sites encountered in the original Tranco re-
search [17], [27]; however, we manually verified with a random
sample that the sites we filtered out were indeed not functional
at the time of our testing. Also note that, Untangle is
necessarily hindered by bot management systems likely to be
deployed in front of production servers, and these may have
had an impact; bypassing such defenses is outside our scope.

To work around the lack of a ground truth, we run Nmap on
the same list, and use the consensus between the two tools to
estimate Untangle’s accuracy in the wild. Therefore, in the
rest of this section, we strictly focus on Layer 1 fingerprints.

Untangle is able to fingerprint 6360 out of 7528 targets2,
mapping them to one of the 13 servers captured in our behavior
repository. Starting with the same list, Nmap can map 5877
of the targets to one of these 13 servers. We summarize the
results in Figure 6 for a visual comparison, demonstrating that
the results are similar. Nmap of course produces fingerprints
that correspond to other technologies, not among the 13 servers
Untangle is aware of; we are not interested in a breakdown
of these, our purpose is not to evaluate Nmap.

Untangle and Nmap’s output do not perfectly overlap.
Specifically, the tools agree on 4984 cases (66.2%), mapping a
given target to the same server. The disagreements that signal
issues fall under one of the following categories.

• Category 1: Nmap maps 219 targets to one of the 13
servers in scope, while Untangle detects an Unknown
server.

1Available at https://tranco-list.eu/list/997K2
2Readers be advised that we discuss many overlapping result sets in this

section, or otherwise focus on specific slices of findings. Numbers do not add
up to 6360, this is not in error.

TABLE VI: Random sample analysis. Numbers do not add up to
100%, remaining cases are undecidable, or both tools are wrong.

Nmap Correct Untangle Correct Sample Size

Category 1 62 (44.2%) 68 (48.5%) 140 (100%)
Category 2 50 (19.5%) 147 (57.4%) 256 (100%)

• Category 2: Untangle maps 1119 targets to one of
the 13 servers in scope, while Nmap either identifies a
different server among those 13, or an entirely different
technology not captured in our behavior repository.

360 cases in Category 2 correspond to the systemic Nmap
issue we demonstrated earlier, where Nmap misclassifies Fastly
as Varnish. That is, Untangle yields the correct result. Elim-
inating these, for all remaining cases, we perform a manual
analysis over random samples taken from each category to
decide which tool is correct. At a 95% confidence level, 5%
margin of error, this yields sample sizes of 140 and 256
targets. Authors perform the analysis based on DNS and HTTP
traces; this is necessarily a subjective, best-effort approach. We
present the results in Table VI.

All outcomes where Untangle is wrong are due to two
major reasons: Sites that heavily customize their error re-
sponses, and unknown servers that return errors highly similar
to those that are in the behavior repository, incorrectly reaching
our similarity threshold.

Looking beyond the consensus set, for 705 targets,
Untangle fingerprints the server as Unknown, while Nmap
detects a server not in our behavior repository. Assuming that
Nmap is accurate, we consider this the correct outcome for us;
Untangle is designed to map foreign technologies as such.

We also glean an interesting insight by comparing the
reasons for each tool’s failure cases. Nmap is easily confused
when the Server field is removed, indicating server cloaking
measures. Untangle is resistant against such intentional
obfuscation, but instead thwarted by more invasive changes to
responses, or by devices that unconditionally return errors or
redirects–these are not defensive techniques, but customization
and infrastructure features. Each tool and their methodologies
have unique properties, and established fingerprinting tech-
niques are not without merit given the right application.

While runtime performance is not critical for fingerprinting,
we nevertheless conclude with five-number summaries over
data points collected during this experiment. Table VII presents
end-to-end fingerprinting runtimes for both tools, and the
number of requests issued for Untangle. We must clarify
that Nmap performs a more generic fingerprinting function
that can identify non-HTTP services as well, and therefore it
naturally takes longer to execute; this is not a fair comparison,
but a reference point. The extreme low-performance cases are
outliers, likely due to slow servers or tarpitting by bot defenses.

In summary, Untangle demonstrably works in practice,
despite server version and configuration diversity. To the extent
that we can validate the results in the absence of ground truth,
the comparison with Nmap gives us assurance that Untangle
is effective and can fingerprint cases where Nmap fails.

12

21
87

14
35

82
7

72
7

46
7

27
5

22
3

95 92 26 3 3

21
85

12
27

83
5

71
7

0

45
4

18

40
3

5 16 13 4

0

500

1000

1500

2000

2500

Clo
ud
fla
re

NG
INX

Ak
am
ai

Clo
ud
Fro
nt

Fa
stl
y

Ap
ach
e

HA
Pro
xy

Va
rni
sh

Ca
dd
y

En
vo
y

AT
S

To
mc
at

Untangle Nmap

Fig. 6: Untangle and Nmap in the wild.

TABLE VII: Performance summaries for Untangle and Nmap.

Nmap Untangle Untangle Requests

Min 0.35 sec 0.01 sec 1
Q1 14.09 sec 1.72 sec 2
Median 19.74 sec 3.79 sec 4
Q3 21.58 sec 7.28 sec 7
Max 255.94 sec 253.35 sec 27

VII. LIMITATIONS

The methodology we presented, though sufficiently generic
in its application to any multi-layer architecture, still has
limitations that must be called out inherent to relying on
server discrepancies. Foremost, the efficacy of the scheme is
correlated with having a rich behavior repository. This implies
that the mechanism for discovering discrepancies is a critical
consideration. In this work, we do not scientifically evaluate
the different ways to build the repository; that remains an open
consideration. However, as discussed in Section IV, our choice
of differential fuzzing is not arbitrary; it is motivated by the
technique’s well-documented discrepancy discovery capabili-
ties and ease of automated future updates to the repository.

Another limitation is inherent in the premise: There exists
server discrepancies. Our evaluation of pairwise discrepancies
in Section IV shows that discrepancy availability is not a
given–though we cannot determine whether this was a limi-
tation of our fuzzer or truly a lack of discrepancies, the end
result negatively impacts accuracy. Proving or disproving the
existence of discrepancies is a non-trivial challenge we do not
tackle here. However, evidenced by the increasing complexity
of the Internet, long history of formal HTTP specifications not
being able to provide prescriptive processing instructions, and
the steady stream of discrepancy attacks, we have empirical
assurance that a lack of discrepancies will not be the blocker to
our approach. On the flip side, in a hypothetical world where
all server technologies perform identically and eliminate all
discrepancies, the security utility of multi-layer web server
fingerprinting diminishes, and that is a good outcome for all.

How robust is our methodology, in the face of regular
server updates that may introduce behavior changes? Can
server developers or operators intentionally modify their be-
havior in an attempt to block fingerprinting? These are valid
concerns that we do not quantify within a scientific framework
here, but we emphasize that our leveraging of fuzzing is mo-
tivated by this very consideration. We anticipate that existing

discrepancies will disappear and brand new discrepancies will
crop up during the course of server development; fuzzing
makes it possible for Untangle to track these changes by
frequent periodic updates. Our experiments in the wild demon-
strate that Untangle can otherwise endure the expected
configuration and infrastructure diversity.

Beyond issues related to the completeness of the behavior
repository, we cannot accurately fingerprint a specific case:
If there are identical servers layered back-to-back, by defi-
nition there cannot be discrepancies between them, and our
methodology will collapse those servers into a single layer.
Technically, this is an incorrect result that does not match
the physical deployment, but we argue that the utility of the
output does not significantly change except for asset discovery
purposes. The resulting fingerprint is useful for reasoning
about discrepancy attacks and vulnerability management.

If the behavior repository is not aware of a given server
technology, we arrive at a similar outcome, where there may be
layers invisible to Untangle in the fingerprint. This is anal-
ogous to how existing single-server fingerprinting techniques
fail; if they are not aware of the server signature, they cannot
possibly detect the server. It is important to clarify that, since
the repository can never feasibly be aware of the universal
set of servers including proprietary technologies, the results
should always be considered a relative ordering of the layers.
We stress once again that this is still useful and actionable
information for security uses of fingerprinting, and in many
cases where common technologies are targeted, the result will
in fact match the physical deployment.

We acknowledge that our evaluation is limited by the
13 technologies we selected and the scope of our fuzzing
experiments. These choices were dictated by our resource
constraints; they are not fundamental limitations of the re-
search. We were also unable to run conclusive fingerprinting
measurements in the wild, as there is no ground truth. We
tested Untangle against 4 enterprise infrastructures where
we were able to confirm the actual deployment via our personal
connections in those companies. We correctly fingerprinted
their 2-layer and 3-layer technologies. Sadly, we do not have
the means to provide any scientific evidence or perform a
larger-scale experiment without external collaborators.

VIII. CONCLUSION

We have presented a web server fingerprinting methodol-
ogy unique in its ability to target multi-layer architectures, and
determine both the server technology and ordering, setting it
apart from all previous works. In doing so, we also showed
that the increasing complexity of the Internet and seemingly
inevitable processing discrepancies, so far exploited with a
surge of novel attacks, can also be leveraged by the security
community for inventing creative new techniques.

Our methodology is imperfect. It has limitations inherent
to the concept of fingerprinting, and doing so by relying on
server discrepancies. Nevertheless, we showed that a practical
application is not only viable, but also effective at solving an
open problem. Recall our overarching research question: Is it
possible to detect multi-layer web servers by utilizing HTTP
parsing discrepancies? We answer the question affirmatively,
and make Untangle available for the community.

13

ACKNOWLEDGMENT

This project was partially supported by NSF grants
2219921, 2127200, 2031390, and 2329540.

REFERENCES

[1] Amazon Web Services, “HTTP Desync Guardian,” 2020, https://
github.com/aws/http-desync-guardian.

[2] L. Bernhard, T. Scharnowski, M. Schloegel, T. Blazytko, and T. Holz,
“JIT-Picking: Differential Fuzzing of JavaScript Engines,” in ACM
Conference on Computer and Communications Security, 2022.

[3] BuiltWith, “BuiltWith Technology Lookup,” https://
trends.builtwith.com/CDN/Content-Delivery-Network.

[4] J. Chen, J. Jiang, H. Duan, N. Weaver, T. Wan, and V. Paxson, “Host
of Troubles: Multiple Host Ambiguities in HTTP Implementations,” in
ACM Conference on Computer and Communications Security, 2016.

[5] Cloudflare, “Cache Deception Armor,” 2023, https:
//developers.cloudflare.com/cache/cache-security/cache-deception-
armor/.

[6] R. T. Fielding, M. Nottingham, and J. F. Reschke, “HTTP Semantics,”
2022, https://datatracker.ietf.org/doc/html/rfc9110.

[7] O. Gil, “Web Cache Deception Attack,” Black Hat USA, 2017, https://
www.blackhat.com/us-17/briefings.html#web-cache-deception-attack.

[8] Gordon Lyon, “Service and Version Detection,” Nmap Network Scan-
ning, 2008, https://nmap.org/book/man-version-detection.html.

[9] B. Jabiyev, S. Sprecher, A. Gavazzi, T. Innocenti, K. Onarlioglu, and
E. Kirda, “FRAMESHIFTER: Security Implications of HTTP/2-to-
HTTP/1 Conversion Anomalies,” in USENIX Security Symposium, 2022.

[10] B. Jabiyev, S. Sprecher, K. Onarlioglu, and E. Kirda, “T-Reqs: HTTP
Request Smuggling with Differential Fuzzing,” in ACM Conference on
Computer and Communications Security, 2021.

[11] A. Kar, A. Natadze, E. Branca, and N. Stakhanova, “HTTPFuzz: Web
Server Fingerprinting with HTTP Request Fuzzing,” in International
Conference on Security and Cryptography, 2022.

[12] J. Kettle, “Practical Web Cache Poisoning,” PortSwigger Web Se-
curity Blog, 2018, https://portswigger.net/blog/practical-web-cache-
poisoning.

[13] ——, “HTTP Desync Attacks: Request Smuggling Reborn,” PortSwig-
ger Web Security Blog, 2019, https://portswigger.net/blog/http-desync-
attacks-request-smuggling-reborn.

[14] ——, “Web Cache Entanglement: Novel Pathways to Poison-
ing,” PortSwigger Research, 2020, https://portswigger.net/research/
web-cache-entanglement.

[15] ——, “HTTP/2: The Sequel is Always Worse,” PortSwigger Web
Security Blog, 2021, https://portswigger.net/research/http2.

[16] A. Klein, “HTTP Request Smuggling in 2020 – New Variants,
New Defenses and New Challenge,” Black Hat USA, 2020, https://
www.blackhat.com/us-20/briefings/schedule/#http-request-smuggling-
in---new-variants-new-defenses-and-new-challenges-20019.

[17] V. Le Pochat, T. Van Goethem, S. Tajalizadehkhoob, M. Korczyński,
and W. Joosen, “Tranco: A Research-Oriented Top Sites Ranking
Hardened Against Manipulation,” in Annual Network and Distributed
System Security Symposium, 2019.

[18] D. Lee, J. Rowe, C. Ko, and K. Levitt, “Detecting and Defending against
Web-Server Fingerprinting,” in Annual Computer Security Applications
Conference, 2002.

[19] C. Linhart, A. Klein, R. Heled, and S. Orrin, “HTTP Request
Smuggling,” Watchfire, 2005, https://www.cgisecurity.com/lib/HTTP-
Request-Smuggling.pdf.

[20] A. MacLachlan, “The benefits of using Varnish,” Fastly Blog, 2015,
https://www.fastly.com/blog/benefits-using-varnish.

[21] Marc Ruef, “httprecon,” 2023, https://www.computec.ch/projekte/
httprecon/?s=documentation.

[22] S. A. Mirheidari, S. Arshad, K. Onarlioglu, B. Crispo, E. Kirda, and
W. Robertson, “Cached and Confused: Web Cache Deception in the
Wild,” in USENIX Security Symposium, 2020.

[23] S. A. Mirheidari, M. Golinelli, K. Onarlioglu, E. Kirda, and B. Crispo,
“Web Cache Deception Escalates!” in USENIX Security Symposium,
2022.

[24] H. V. Nguyen, L. L. Iacono, and H. Federrath, “Your Cache Has
Fallen: Cache-Poisoned Denial-of-Service Attack,” in ACM Conference
on Computer and Communications Security, 2019.

[25] OWASP, “Fingerprint Web Server,” Web Security Testing
Guidance, 2020, https://owasp.org/www-project-web-security-testing-
guide/stable/4-Web Application Security Testing/01-Information
Gathering/02-Fingerprint Web Server.

[26] T. Petsios, A. Tang, S. Stolfo, A. D. Keromytis, and S. Jana, “Nezha: Ef-
ficient Domain-Independent Differential Testing,” in IEEE Symposium
on Security and Privacy, 2017.

[27] V. L. Pochat, T. V. Goethem, and W. Joosen, “Evaluating the Long-term
Effects of Parameters on the Characteristics of the Tranco Top Sites
Ranking,” in USENIX Workshop on Cyber Security Experimentation
and Test, 2019.

[28] PortSwigger, “param-miner,” 2020, https://github.com/PortSwigger/
param-miner/blob/master/resources/headers.

[29] G. S. Reen and C. Rossow, “DPIFuzz: A Differential Fuzzing Frame-
work to Detect DPI Elusion Strategies For QUIC,” in Annual Computer
Security Applications Conference, 2020.

[30] Saumil Shah, “httprint–An Introduction to HTTP Fingerprinting,” 2004,
https://www.net-square.com/httprint paper.html.

[31] K. Shen, J. Lu, Y. Yang, J. Chen, M. Zhang, H. Duan, J. Zhang,
and X. Zheng, “HDiff: A Semi-automatic Framework for Discovering
Semantic Gap Attack in HTTP Implementations,” in IEEE/IFIP Inter-
national Conference on Dependable Systems and Networks, 2022.

[32] Tenable Nessus, “HMAP Web Server Fingerprinting,” 2023, https:
//www.tenable.com/plugins/nessus/11919.

APPENDIX

We present Untangle’s fingerprinting capabilities in Ta-
ble VIII. This is a dense table meant as a detailed reference
material; readers can safely skip it.

The table is three-dimensional, where each column repre-
sents the server that stands in Layer 1 and each row represents
the server that stands in Layer 2. During fingerprinting, if we
cannot detect the server in Layer 2, we use ✗ to indicate this.
If we detect the server in Layer 2, but cannot find any of
the Layer 3 servers, we use ✓ to indicate this. If we detect
the server in Layer 2 and at least one server in Layer 3, we
represent the list of Layer 3 servers by using symbols shown in
the table caption. Note that we detect all Layer 1 servers in all
permutations, and therefore do not show Layer 1 information
in the table for brevity.

14

https://github.com/aws/http-desync-guardian
https://github.com/aws/http-desync-guardian
https://trends.builtwith.com/CDN/Content-Delivery-Network
https://trends.builtwith.com/CDN/Content-Delivery-Network
https://developers.cloudflare.com/cache/cache-security/cache-deception-armor/
https://developers.cloudflare.com/cache/cache-security/cache-deception-armor/
https://developers.cloudflare.com/cache/cache-security/cache-deception-armor/
https://datatracker.ietf.org/doc/html/rfc9110
https://www.blackhat.com/us-17/briefings.html#web-cache-deception-attack
https://www.blackhat.com/us-17/briefings.html#web-cache-deception-attack
https://nmap.org/book/man-version-detection.html
https://portswigger.net/blog/practical-web-cache-poisoning
https://portswigger.net/blog/practical-web-cache-poisoning
https://portswigger.net/blog/http-desync-attacks-request-smuggling-reborn
https://portswigger.net/blog/http-desync-attacks-request-smuggling-reborn
https://portswigger.net/research/web-cache-entanglement
https://portswigger.net/research/web-cache-entanglement
https://portswigger.net/research/http2
https://www.blackhat.com/us-20/briefings/schedule/#http-request-smuggling-in---new-variants-new-defenses-and-new-challenges-20019
https://www.blackhat.com/us-20/briefings/schedule/#http-request-smuggling-in---new-variants-new-defenses-and-new-challenges-20019
https://www.blackhat.com/us-20/briefings/schedule/#http-request-smuggling-in---new-variants-new-defenses-and-new-challenges-20019
https://www.cgisecurity.com/lib/HTTP-Request-Smuggling.pdf
https://www.cgisecurity.com/lib/HTTP-Request-Smuggling.pdf
https://www.fastly.com/blog/benefits-using-varnish
https://www.computec.ch/projekte/httprecon/?s=documentation
https://www.computec.ch/projekte/httprecon/?s=documentation
https://owasp.org/www-project-web-security-testing-guide/stable/4-Web_Application_Security_Testing/01-Information_Gathering/02-Fingerprint_Web_Server
https://owasp.org/www-project-web-security-testing-guide/stable/4-Web_Application_Security_Testing/01-Information_Gathering/02-Fingerprint_Web_Server
https://owasp.org/www-project-web-security-testing-guide/stable/4-Web_Application_Security_Testing/01-Information_Gathering/02-Fingerprint_Web_Server
https://github.com/PortSwigger/param-miner/blob/master/resources/headers
https://github.com/PortSwigger/param-miner/blob/master/resources/headers
https://www.net-square.com/httprint_paper.html
https://www.tenable.com/plugins/nessus/11919
https://www.tenable.com/plugins/nessus/11919

TABLE VIII: Untangle’s complete 3-layer detection reference.

Akamai: �, Cloudflare: □, CloudFront: ⋆, Fastly: �, Apache: (, ATS: $, Caddy: �, Envoy: 6, HAProxy: #, NGINX: ○, Squid: ", Tomcat: p, Varnish: ◎
Layer 1

Akamai Cloudflare CloudFront Fastly Apache ATS Caddy Envoy HAProxy NGINX Squid Varnish

Akamai N/A (�○p ✓ (�○p N/A N/A N/A N/A N/A N/A N/A N/A

Cloudflare (�○p N/A ✗ ($�6#○"p N/A N/A N/A N/A N/A N/A N/A N/A

CloudFront ($�6#○"p◎ ✓ N/A ✓ N/A N/A N/A N/A N/A N/A N/A N/A

Fastly (�○p ($�6#○"p◎ ✓ N/A N/A N/A N/A N/A N/A N/A N/A N/A

Apache ✓ ✓ ✓ $6#○"p N/A 6#○"p $6#○"p $○p $6○p ✓ $6○p $6#○"p

ATS (�○p (�6#○"p◎ ✓ (�○p ○p N/A 6#○"p (�○p (�6○"p◎ ✗ (�6○p◎ (�6#○"p

Caddy ✓ ✓ ✓ $6#○"p ✗ 6#○"p N/A $○p ($6○" ✓ $6○p ($6#○"

L
ay

er
2

Envoy (�○p ($�○p ✓ (�○p ○p (�○p $○p N/A ($�○p ✓ ($�○p ($�○p

HAProxy ($�6○"p◎ (�6○"◎ ($�6○"p◎ (�6○p 6○p (�6○"p◎ ✗ ✗ N/A (�6"p◎ ($�6○p◎ ($�6○"p

NGINX ✓ (�6#"p◎ ✓ ✓ ✓ (�6#"p◎ ✓ ✓ (�6"p◎ N/A (�6p◎ ✓

Squid ($�6#○p◎ ($�6#○p◎ ($�6#○p◎ (�6○p 6○p (�6○p◎ $6○p ✗ ($�6○p◎ (�6p◎ N/A ($�6○p

Varnish (�○p ($�6○p ✓ (�6#○"p ✗ (�6#○"p ($�6#○"◎ ✗ ($�6○"p ✓ ($�6○p N/A

15

	Introduction
	Background and Research Overview
	HTTP Proxies and Discrepancy Attacks
	Web Server Fingerprinting
	Fuzzing
	Research Statement

	Multi-Layer Fingerprinting Methodology
	Phase 1: Fingerprint In Order
	Phase 2: Fingerprint Without Order
	Phase 3: Refining The Ordering

	Building A Behavior Repository via Fuzzing
	Generating And Mutating HTTP Requests
	Request Line Mutations
	Header Mutations
	Body Mutations

	Discovering Discrepancies And Errors
	Viability Of Fuzzing To Build The Behavior Repository

	Error-to-Server Matching
	Evaluation
	Fingerprinting Accuracy
	Accuracy With Unknown Servers
	Untangle Versus Nmap
	Testing In the Wild

	Limitations
	Conclusion
	References
	Appendix

